Strengthening The Knowledge and Evidence-Based Data for Anti-Microbial Resistance

Cesar A. Arias MD PhD

@SuperBugDoc

Disclosures

 Grant Recipient: MeMed diagnostics, Merck and Entasis Pharmaceuticals

Objectives

- Strengthening knowledge and evidence-based data for AMR
 - Conceptual framework
 - -Diagnosis
 - -Surveillance
 - -Clinical data

Costs of The "Silent" Pandemic of AMR

Conceptual Framework

Appropriate Use of Antibiotics Saves Lives

^{1.} Ibrahim, et al. *Chest*.2000;118:146–155. 2. Leibovici, et al. *J Intern Med*.1998;244:379–386. 3. Luna, et al. *Chest*.1997;111:676–685. 4. Alvarez-Lerma, et al. *Intensive Care Med*.1996;22:387–394. 5. Rello, et al. *AJRCCM*.1997;156:196–200.

Diagnosis of Antimicrobial Resistance

Diagnostic approaches to identify resistance are grossly inaccurate

"Susceptible" or "Resistant" does not often translate into therapeutic success or failure

Genomics and the Conundrum of identifying resistance

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

OCTOBER 11, 2018

VOL. 379 NO. 15

Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing

The CRyPTIC Consortium and the 100,000 Genomes Project

Strengthening The Knowledge and Evidence in AMR Diagnosis

- Breakpoint interpretation to be universal
- Moving from a phenotypic to genotypic interpretation and, likely, a mixed approach
- Free and widespread access to genomic information and tools for resistance interpretation
- "Real-time" tools to identify emerging patterns of resistance with genotypic and mechanistic basis
- Genomic diagnostic platform development for each AMR priority pathogen

Surveillance of Antimicrobial Resistance

"Gene" Dissemination

Clone Dissemination: MRSA USA300 Lineage

Strengthening The Knowledge and Evidence-Base in AMR Surveillance

- Sustained and real-time global data sharing of information that permits identification of emerging mechanisms of resistance in priority pathogens
- Deployment of targeted genomic tools with a coordinated system that allows real-time understanding of changes in epidemiology of AMR organisms
- Bug-specific typing systems that need to be facile and flexible to identify emerging genetic lineages carrying particular resistance determinants
- Strengthening bioinformatic capabilities for the developing world

Clinical Outcomes of AMR Infections

Measuring patient-centered outcomes in AMR infections is not trivial

- Studies typically measure hospital days, intensive care unit days, and antibiotic use (a surrogate for future antimicrobial resistance). This outcomes could be misleading
- Non-inferiority trial design with respect to clinical outcome (eg, cure) does not address the relevant question regarding whether one approach is better than another
- The null hypothesis is that the experimental strategy is inferior, viewed by some as a violation of the equipoise necessary for randomization.
- Trial results show that some patients may benefit while some may experience harm (adverse effects)

Strengthening The Knowledge and Evidence in Clinical Outcomes

- Clinical trial platforms with a global reach that can continually enroll patients infected with priority pathogens
- Pragmatic clinical trials that can pivot once new agents become available in latest stages of development
- Prioritization of efficacy, safety, and quality of life
- Global clinical trial network that allows access to enrollment in both developed and developing world.
- Innovative trial designs are critically needed. DOOR and other modalities may need to be explored at large scale

Conclusions

- Strengthening knowledge and evidence-based data in AMR should focus in three major domains: diagnosis, surveillance and measurement of clinical outcomes
- Deployment of genomics tools holds promise to develop a truly global network of data and interpretation to help dealing with recalcitrant cases
- These strategies need to be coordinated with efforts in drug development and in the understanding of the mechanistic basis of resistance
- Innovations in clinical trial design derived form the COVID-19 pandemic can be used to tackle the AMR crisis.

