

Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report

Early implementation

2020

Antimicrobial Resistance

- Antimicrobial resistance (AMR) occurs when bacteria, viruses, fungi and parasites become resistant to the
 antimicrobial drugs used to treat them
- AMR is one of the greatest threats to modern medicine
 - In some G20 countries, more than 40% of infections are due to bacteria that are resistant to antibiotics*
 - Economic damage of uncontrolled resistance will be comparable to the 2008-2009 global financial crisis
- AMR threatens achievement of the Sustainable Development Goals

Source: IACG. (2019). No time to wait: Securing the future from drug-resistant infections. Report to the Secretary-General of the United Nations. Available at: https://www.who.int/antimicrobial-resistance/interagency-coordination-group/IACG final report EN.pdf?ua=1

Global Action Plan on AMR

- 1. Improve awareness and understanding
- 2. Strengthen knowledge through surveillance & research
- 3. Reduce the incidence of infection
- 4. Optimize the use of antimicrobial medicines
- 5. Ensure sustainable investment

World Health Assembly, 2015, Resolution WHA68.7

Interangency Coordination Group on AMR

- > Accelerated implementation of One Health national action plans must be at the heart of the global response to antimicrobial resistance
- "Strengthening monitoring and surveillance is important to:
 - track the use of antimicrobials and the spread of resistance in humans, animals, plants and food;
 - build the evidence base for action;
 - support multisectoral collaboration; and
 - monitor progress."

APRIL 2019

ACG Interogency Coordination Group or Antimicrobial Resistance

What is the purpose of GLASS?

Objectives:

- foster national surveillance systems through harmonised global standards
- estimate the extent of AMR globally
- detect AMR emergence and spread
- generate data to inform AMR burden estimates
- inform strategies to tackle AMR

What is GLASS?

Global Antimicrobial Resistance and Use Surveillance System

- The first global system to incorporate official national data from surveillance of AMR
 - standardized approach to the collection, analysis, and sharing of AMR, AMC and AMU data
 - One Health model for AMR surveillance
 - epidemiological, clinical, and microbiological data

GLASS activities

ROUTINE DATA SURVEILLANCE

Antimicrobial Resistance surveillance (GLASS-AMR)

Antimicrobial Consumption surveillance (GLASS-AMC)

Countries enrolled in GLASS

As of 20 May 2020

92 countries, territories and areas

Not Applicable

GLASS Report 2020

- ✓ Summarizes information from 78 countries collected between May-Jul 2019
 - on the status of development of national AMR surveillance systems; and
 - AMR rates due to selected pathogens in four infection sites (bloodstream, urinary tract, gastro-intestinal and genital)
- ✓ Summarizes global AMR surveillance in DR-TB, HIV-DR, and malaria;
- ✓ Summarizes AMR surveillance activities in all WHO Regions; and
- ✓ Describes ongoing development of GLASS

DR Tuberculosis

Data Summary

Dr Anna Dean WHO Global TB Programme

Burden of rifampicin-resistant TB

Mycobacterium tuberculosis is a major contributor to AMR burden:

484,000 new cases of rifampicin-resistant TB and 214,000 deaths due to rifampicin-resistant TB were estimated to have occurred in 2018

Most recent year of data: rifampicin-resistant TB

Representative data from 164 countries (99% of the world's TB cases) since 1995

Sources of data: rifampicin-resistant TB

Strengthening continuous surveillance through expansion of rapid molecular testing networks:

Representative data from 105 countries in 2018, versus 91 countries in 2017

More information

Revised guidelines due late 2020

Implementation guide for next-generation sequencing due late 2020

Updated data due October 2020

DR HIV

Data Summary

Dr Silvia Bertagnolio HIV Drug Resistance Programme

HIV drug resistance surveillance and monitoring strategy

- 1. Monitoring of early warning indicators of HIV drug resistance
- 2. Surveillance of HIV drug resistance among:
- Adults initiating antiretroviral therapy
- Children <18 months with a new diagnosis of HIV
- Adults and children receiving antiretroviral therapy

WHO HIVDR surveillance guidance

Global network of WHO-designated labs for HIVDR testing

Surveys of HIV drug resistance conducted with WHO-recommended standard methods (2004–2019)

Increasing levels of pretreatment HIV drug resistance

Phillips, et al. JID, 2017

Response in Countries with high levels of HIVDR

ESWATINI: PDR to EFV/NVP

National guidelines revised

to include the use of DTG

as preferred first-line ART

for adults and adolescents

childbearing potential through

(in women and girls of

informed choice).

10.5%.

NAMIBIA: PDR to EFV/NVP 13.8%.

National guidelines revised to include

the use of DTG as preferred first-line

ART for adults and adolescents (in

women and girls of childbearing potential through informed choice).

CUBA: PDR to EFV/NVP 22.8%.

National guidelines revised to include the use of DTG as preferred first-line ART for adults and adolescents (and in women of child-bearing potential who are on reliable and consistent contraception

HONDURAS: PDR to EFV/NVP 25.9%.

Revision of national guidelines to use DTG as preferred first-line ART planned

GUATEMALA: PDR to EFV/NVP 13.2%.

National guidelines revised to include the use of DTG as preferred first-line ART for adults and adolescents (and in women of child-bearing potential who are on reliable and consistent contraception

NICARAGUA: PDR to EFV/NVP 19.3%.

Revision of national guidelines to use DTG as preferred first-line ART planned

POR to NNRTI>10%
Not applicable

ARGENTINA: PDR to EFV/NVP 10.9%.

National guidelines revised to include the use of DTG as preferred first-line ART for adults and adolescents (and women of child-bearing potential who are on reliable and consistent contraception). Genotypic resistance testing used to guide treatment in women of child-bearing potential not eligible to use DTG

WHO HIV drug resistance:

https://www.who.int/hiv/topics/drugresistance/en/

UGANDA: PDR to EFV/NVP 15.4%.

National guidelines revised to include the use of DTG as preferred first-line ART for adults and adolescents (in women and girls of childbearing potential through informed choice).

ZIMBABWE: PDR to EFV/NVP 10.9%.

National guidelines revised to include the use of DTG as preferred first-line ART for adults and adolescents (in women and girls of childbearing potential through informed choice).

NEPAL: PDR to EFV/NVP 10.2%.

Revision of national guidelines to use DTG as preferred first-line ART planned

> PAPUA NEW GUINEA: PDR to EFV/NVP 17.8%.

National guidelines revised to include the use of DTG as preferred firstline ART

SOUTH AFRICA: PDR to EFV/NVP 23.6%.

National guidelines revised to include the use of DTG as preferred first-line ART for adults and adolescents (in women and girls of childbearing potential through informed choice). Using evidence from surveys to inform optimal regimen selection and HIV Treatment Guidelines

Malaria TES

Data Summary

Dr Charlotte Rasmussen Global Malaria Programme

Introduction: Antimalarial drug efficacy and resistance

- Antimalarial drug resistance has repeatedly developed, causing increases in malaria morbidity and mortality
- Currently, WHO recommends Artemisinin-based Combinations Therapy (ACTs) for the treatment of *P. falciparum* malaria and chloroquine or ACTs for *P. vivax*.
- In most of the world, these antimalarial drugs are highly efficacious.
- However, P. falciparum resistance in the Greater Mekong Sub-region does pose a challenge.

Antimalarial drug resistance: Tools for monitoring

- Therapeutic Efficacy Studies (TES) are the gold standard for monitoring antimalarial drug efficacy, and is needed to inform the national treatment policies.
- WHO recommends that TES are done in sentinel sites in malaria endemic countries at least once every 2 years.
- WHO has developed tools and a standard protocol to help countries do efficacy studies.
- In addition, different genetic mutations found to be associated with resistance to specific drugs have been identified. These molecular markers are useful to confirm resistance and help monitor the spread of resistance.

Antimalarial drug resistance: Data availability

TES studies for *P. falciparum*: 912

TES studies for P. vivax: 192

Malaria threat maps

http://apps.who.int/malaria/maps/threats/

GLASS-AMR

......

Data Summary

What data does GLASS-AMR collects?

Status of national AMR surveillance system

 Indicators collected: overall coordination, surveillance system structure, and quality control

AMR data

- for eight priority human bacterial pathogens isolated from clinical specimens
 - ✓ blood, urine, stool, and cervical and urethral specimens
- population data:
 - ✓ overall number of patients tested per specific specimen
 - ✓ age, gender, and infection origin (hospital versus community)

GLASS-AMR specimens/pathogens/Ab

Infection site	Pathogen				
	Acinetobacter spp.				
	E. coli				
Bloodstream	K. pneumoniae				
Diooustream	Salmonella spp.				
	S. aureus				
	S. pneumoniae				
Urinary tract	E. coli				
Urinary tract	K. pneumoniae				
Gastroenteric	Salmonella spp.				
Gastroentenc	Shigella spp.				
Genital	N. gonorrhoeae				

- Specimen type as a proxy for infection
- 4 target sites
- 8 target pathogens causing common human infections
- List of antimicrobials assessed for drug resistance
 - ✓ Sulfonamides and Trimethoprim
 - ✓ Fluoroguinolones
 - ✓ Third Generation cephalosporins
 - ✓ Fourth Generation cephalosporins
 - ✓ Carbapenems
 - Polymixins
 - ✓ Tetracycline
 - Aminoglycosides
 - ✓ Penicillins
 - ✓ Penicillinase-stable beta lactams
 - Macrolides
 - ✓ Aminocyclitols

GLASS-AMR submission

By the end of data call, 31st July 2019

- 82 countries/territories/areas enrolled
- 78 countries/territories/areas submitted data
 - 12 countries provided only the information on the status of their national AMR surveillance systems.
 - One country provided AMR rates only
 - 65 countries provided the information on the status of their national AMR surveillance systems and 2018 AMR rates

Reporting by Economic Status

Economic status (World Bank 2019)

■ Information on surveillance system ■ AMR rates

GLASS Profiles

Implementation of surveillance activities

- AMR
- Antimicrobial consumption (AMC)
- HIV DR
- DR TB
- Malaria therapeutic efficacy studies
- One Health AMR surveillance ESBL E. coli across sectors (Tricycle Project)
- Enhanced gonorrhoea AMR surveillance (EGASP)

Specific indicators on

- Core components of AMR surveillance
- HIV DR
- DR TB
- AMR data submission to GLASS

Myanmar Population 54.05 million

> Digativet and surpatient. Smillter.

The National action plan for AMR has been established since 2017. The National Multi-Sectoral Steering Committee (NMSC) Combating AMR Myanmar was endorsed on the 22nd January 2018.

ACTIVITIES	MINEMENTALIS
DIASS AME	-
SLATE AND	
1104 200	V
DATE	4
Malada TEP	-
Triange (in	
HAID	

National AMR surveillance systems key indicators

7 laboratories performing AST EQA provided to all tabs for barneral identification and AST for some of ELASS partrogens	igh.	- Jah	- dmt
NRL Entablished AST standard CLSI EGA Provided	2	34%	NOC Established National Action Plan In plane
in 2019 data cell all national surveillance			

GLASS .

Priority country for HIV: Tier	1
Year of most recent survey	2016
Type of survey	prehadowel etirotog resistance labeled

police Diversor Exercises	
Drug-metatant 10 surveillan	* 5
High burden country'	Yes
Source of date	Surveillance
Surevillance coverage	Name
Year of react recent activity	2018
Number of data points (1995-2019)	t.

1. His taskate, whether the country has been defined by specified the personal differ MIDD as being a top residen of 18 ont/or treatment reported 19 pages 150 . Argustine of person floor esticits sides are acceptable to a

Specimen	Extrape	AST results	Age	Sandar	infactors origin	Data on number of tectod pattern
	Accommodator spe-					
	E, 008					
Best	K presmoriae					200
	Daimumella spp.					
	S. avenus					
	5 pneummies					
Stool	Salmonetis spp.					- 1
	Stepelle spp.					
this or	Logi					
Urine	K pneumoniae					
Gental	N. gonorrhouse					

National rates of AMR on WHO-GHO

- All data produced by GLASS is available free online and will be updated regularly.
 - GLASS data visualization page on the WHO Global Health Observatory http://who.int/entity/gho/glass/en/index.html
 - GLASS website http://www.who.int/glass/en/

Data provided by countries are available with the online report's supplementary material

AMR data: Progress in reporting

Reported to GLASS - AMR	2017 (22 countries)	2018 (48 countries)	2019 (66 countries)		
Number of sites					
Hospitals	466	3,097	5,521		
Outpatients clinics	139	2,358	56,818		
In-out patients	N.A.	N.A.	1,998		
Other institutions	124	560	424		
Total	729	6,015	64,761		
Number of patients with suspected infe	ction				
Blood stream	81,920	262,265	441,794		
Urinary tract	415,679	1,424,011	1,888,545		
Gastro-intestinal	7,477	10,735	17,061		
Sexually transmitted	2,847	9567	18,572		
Total	507,923	1,706,578	2,365,972		

Most countries reporting for the third year in a row showed an increase in the number of surveillance sites reporting

Reported infections by pathogen

Infection site	Total number of infected patients	Pathogen	Number of infected patients (by pathogen)				Number of patients with AST results	Pathogen	Number of patients with AST results(by pathogen) ^a			ılts(by
			Community	Hospital	Unknown	TOTAL	Total		Community	Hospital	Unknown	TOTAL
Bloodstream		Acinetobacter spp.	1 780	2 736	12 922	17 438	426 010 3	Acinetobacter spp.	1 495	2 464	11526	15485
		E. coli	48 939	35 974	144 701	229 614		E. coli	46 788	35 544	142140	224472
	441 794	K. pneumoniae	15 306	15 455	44 279	75 040		K. pneumoniae	14 465	14 951	42088	71504
	441 /94	Salmonella spp.	2 947	334	7 907	11 188		Salmonella spp.	1 528	270	7113	8911
		S. aureus	12 030	17 408	60 054	89 492		S. aureus	10 325	17 007	59728	87060
		S. pneumoniae	3 627	1 274	14 121	19 022		S. pneumoniae	3 261	1 236	14081	18578
I lain a markan ak	1 888 545	E. coli	405 942	164 385	1 121 325	1 691 652	1 705 167	E. coli	293 063	157 075	1079508	1529646
Urinary tract		K. pneumoniae	64 571	42 206	90 116	196 893		K. pneumoniae	51 154	40 541	83826	175521
Gastroenteric	17 061	Salmonella spp.	2 630	257	9 269	12 156	15 029	Salmonella spp.	1 966	152	8207	10325
		Shigella spp.	375	42	4 488	4 905		Shigella spp.	358	29	4317	4704
Genital	18 572	N. gonorrhoeae	16 336	1	2 235	18 572	18 362	N. gonorrhoeae	16 195	0	2167	18362
Total	2 365 972		574 483	280 072	1 511 417	2 365 972	2 164 568		440 598	269 269	1,454,701	2,164,568

Bloodstream infections

^{*}Rates are shown only if results were reported for > 10 patients and for pathogen—antibiotic combinations with > 10 AST results and < 30% unknown results. Single antibiotic results are shown only if data were submitted by at least 50% of the countries reporting on the specimen-pathogen combination.

Bloodstream infections

^{*}Rates are shown only if results were reported for > 10 patients and for pathogen—antibiotic combinations with > 10 AST results and < 30% unknown results. Single antibiotic results are shown only if data were submitted by at least 50% of the countries reporting on the specimen-pathogen combination.

Bloodstream infections

Bloodstream infections

Blood - Acinetobacter spp.

^{*}Rates are shown only if results were reported for > 10 patients and for pathogen—antibiotic combinations with > 10 AST results and < 30% unknown results. Single antibiotic results are shown only if data were submitted by at least 50% of the countries reporting on the specimen-pathogen combination.

Bloodstream infections

Bloodstream infections

^{*}Rates are shown only if results were reported for > 10 patients and for pathogen—antibiotic combinations with > 10 AST results and < 30% unknown results. Single antibiotic results are shown only if data were submitted by at least 50% of the countries reporting on the specimen-pathogen combination.

Urinary Tract infections

Urine - E. coli

Antibiotic / Number of reporting countries, territories and areas*

Resistance and Use Surveillance System

Urinary Tract infections

^{*}Rates are shown only if results were reported for > 10 patients and for pathogen-antibiotic combinations with > 10 AST results and < 30% unknown results. Single antibiotic results are shown only if data were submitted by at least 50% of the countries reporting on the specimen-pathogen combination.

Gastrointestinal infections

^{*}Rates are shown only if results were reported for > 10 patients and for pathogen—antibiotic combinations with > 10 AST results and < 30% unknown results. Single antibiotic results are shown only if data were submitted by at least 50% of the countries reporting on the specimen-pathogen combination.

Gastrointestinal infections

^{*}Rates are shown only if results were reported for > 10 patients and for pathogen—antibiotic combinations with > 10 AST results and < 30% unknown results. Single antibiotic results are shown only if data were submitted by at least 50% of the countries reporting on the specimen-pathogen combination.

Gonorrhoea (genital infection)

^{*}Rates are shown only if results were reported for > 10 patients and for pathogen—antibiotic combinations with > 10 AST results and < 30% unknown results. Single antibiotic results are shown only if data were submitted by at least 50% of the countries reporting on the specimen-pathogen combination.

National frequencies of infections and resistant infections for community and hospital infection origin

Highlights of reported resistance

While the data still need to improve national representativeness, some alarming rates have been reported.

- Median frequency of resistance in pathogens isolated from patients with bloodstream infections
 - methicillin-resistant *S. aureus* (MRSA): 12.11% (IQR 6.4–26.4)
 - E. coli resistant to third-generation cephalosporins: 36.0% (IQR 15.2–63.0)
 - K. pneumoniae resistant to third-generation cephalosporins 57.6% (IQR 33.4-77.8), with 12 countries reporting 80-100% resistance
 - Acinetobacter spp.: aminoglycosides 41.2% (IQR 5.20–83.31); carbapenems 63.2% (IQR 19.78 -81.63)
- Median resistance to ciprofloxacin in urinary tract infections
 - 43.29% (IQR 23.8 46.4)) for *E. coli* in 33 reporting countries, territories and areas
 - 38.1% (IQR 8.41 63.53) for *K. pneumoniae* in 34 reporting countries, territories and areas

Limitations & The way forward

Limitations and challenges

Steps towards a global system

2014

Summarise status of AMR surveillance globally 2015

Develop *global* standards for surveillance

2016

Establish a **global** surveillance system

2017-18

GLASS data call and reporting 2019

Incorporation of AMC and focused surveillance activities, studies and surveys

2020

GLASS revision

Stockholm, April 2021:

- 3rd High Level Technical Consultation and Meeting on Surveillance of Antimicrobial Resistance and Use for Concerted Actions
- Supported by Republic of Korea and Sweden

Partners

Work through WHO network with partners' support

- GLASS AMR Collaborative Platform with partner technical institutions
- WHO AMR Surveillance and Quality Assessment Collaborating Centres Network
- Key support
 - country capacity building to conduct AMR surveillance
 - foster the participation of countries in GLASS
 - GLASS development and dissemination

Conclusions

Conclusion

- GLASS relies on continued data sharing as well as global collaboration, harmonisation, and coordination between all partners involved in the implementation of AMR surveillance.
- Some countries still face huge challenges to building their national surveillance systems and partners play a key role in assisting WHO support countries.
- Data limitations should not impede the surveillance, but rather be used to improve it!
- Regional surveillance networks and other AMR surveillance initiatives play a key role
- Country full ownership of data is paramount

We are at the initial steps of the global system!

For more information on GLASS

- More information on GLASS and synergies, enrolment procedures, links to the GLASS manuals, the yearly report, and data visualization can be found on the GLASS website http://www.who.int/glass/en/
- Other WHO AMR surveillance initiatives.
 - HIV Drug Resistance http://www.who.int/hiv/pub/drugresistance/hivdr-action-plan-2017-2021/en/
 - MDR-TB Surveillance http://www.who.int/tb/areas-of-work/monitoring-evaluation/mdr-tb-surveillance/en/
 - Malaria drug resistance and response http://www.who.int/malaria/areas/drug_resistance/en/
 - Influenza virus resistance http://www.who.int/influenza/patient care/antivirals/oseltamivir summary/en/

.........

Thank you!

Contact: glass@who.int