

1
2
3 **WHO/BS/2022.2424**

4 **ENGLISH ONLY**

5

6 **WHO approach towards the development of a global regulatory framework**
7 **for cell and gene therapy products**

8

9 **NOTE:**

10 This document has been prepared for the purpose of inviting comments and suggestions on the
11 proposals contained therein, which will then be considered by the Expert Committee on
12 Biological Standardization (ECBS). Publication of this early draft is to provide information
13 about the proposed document- *WHO approach towards the development of a global regulatory*
14 *framework for cell and gene therapy products*, to a broad audience and to ensure the
15 transparency of the consultation process.

16 **The text in its present form does not necessarily represent the agreed formulation of the**
17 **ECBS. Written comments proposing modifications to this text MUST be received by**
18 **9 September 2022 using the Comment Form available separately** and should be addressed to
19 the Department of Health Products Policy and Standards, World Health Organization, 20 Avenue
20 Appia, 1211 Geneva 27, Switzerland. Comments may also be submitted electronically to the
21 Responsible Officer: **Dr Richard Isbrucker at email: isbruckerr@who.int**.

22 The outcome of the deliberations of the Expert Committee will be published in the WHO
23 Technical Report Series. The final agreed formulation of the document will be edited to be in
24 conformity with the "WHO style guide, second edition" (KMS/WHP/13.1).

25

26 © World Health Organization 2022

27 All rights reserved.

28 The designations employed and the presentation of the material in this publication do not imply the expression of
29 any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country,
30 territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines
31 on maps represent approximate border lines for which there may not yet be full agreement.

32

33 The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or
34 recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
35 Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

36
37 All reasonable precautions have been taken by the World Health Organization to verify the information contained in
38 this publication. However, the published material is being distributed without warranty of any kind, either expressed
39 or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the
40 World Health Organization be liable for damages arising from its use.

41

42 This draft document does not necessarily represent the decisions or the stated policy of the World Health
43 Organization. The named authors [or editors as appropriate] alone are responsible for the views expressed in this
44 publication.

45

This document is intended to describe WHO's current thinking on the regulation of Cell and Gene Therapy Products, to promote convergence, and encourage the Member States to strengthen their regulatory system on both human cells and tissues (HCTs) and advanced therapy medicinal products (ATMPs). This document is not intended to be a comprehensive overview of regulatory requirements for either HCTs or ATMPs or the different regulatory frameworks that currently exist in different jurisdictions. The objective of this document is to outline some of the fundamental principles that are important for providing adequate regulatory oversight for different types of cell and gene therapy products and it should be reviewed in that context. In the future, WHO will provide a more comprehensive overview and guidance on specific topics relevant to regulation of HCTs and ATMPs.

46

47 **WHO approach towards the development of a global regulatory framework**
48 **for cell and gene therapy products**

49

50 **Introduction**

51 **Purpose**

52 **Terminology**

53 **Classification of HCTs and ATMPs**

54 **Regulatory expectations for HCTs and ATMPs**

55 **A risk-based approach for the regulatory oversight of HCTs and ATMPs**

56 **Considerations in the development of a regulatory framework**

57 **Collaboration and strengthening regulatory capacity globally for the oversight of HCTs**
58 **and ATMPs**

59 **Conclusion and next steps**

60 **Acknowledgements**

61 **References**

62 **Appendix**

63 **Table 1**

64 **Figure 1**

65 **Abbreviations**

66	
67	ASEAN Association of Southeast Asian Nations
68	ATMP Advanced Therapy Medicinal Product
69	AVAREF African Vaccine Regulatory Forum
70	CD Cluster of differentiation
71	CRP Collaborative Review Procedure
72	GCP Good Clinical Practice
73	GLP Good Laboratory Practice
74	GMP Good Manufacturing Practice
75	HCT Human cells and tissues for medical use
76	HIV Human immunodeficiency virus
77	ICDRA International Conference of Drug Regulatory Authorities
78	LMICs Low- and Middle-Income Countries
79	NRA National Regulatory Authority
80	PIC/S Pharmaceutical Inspection Co-operation Scheme
81	WHO World Health Organization
82	

This document is intended to describe WHO's current thinking on the regulation of Cell and Gene Therapy Products, to promote convergence, and encourage the Member States to strengthen their regulatory system on both human cells and tissues (HCTs) and advanced therapy medicinal products (ATMPs). This document is not intended to be a comprehensive overview of regulatory requirements for either HCTs or ATMPs or the different regulatory frameworks that currently exist in different jurisdictions. The objective of this document is to outline some of the fundamental principles that are important for providing adequate regulatory oversight for different types of cell and gene therapy products and it should be reviewed in that context. In the future, WHO will provide a more comprehensive overview and guidance on specific topics relevant to regulation of HCTs and ATMPs.

85 **Introduction**

86

87 The use of cells, tissues, and gene therapy products for the treatment of human diseases or
88 physical conditions has developed wide interest due to their potential to address serious unmet
89 medical needs. These cell-, tissue- and gene-based therapies and products (1) encompass a
90 remarkably broad range of complexity, ranging from the relatively simple (such as unprocessed
91 autologous cells and tissue grafts) to the highly complex (such as genetically modified cells).
92 Many countries have established an effective legal framework and regulations reflective of the
93 diversity and complexity of this class of therapies and products in order to ensure the protection
94 of the donors and safety of the recipients.

95

96 Cells and tissues which have undergone minimal manipulation are often, but not necessarily,
97 used to provide the same essential functions in the recipient as they do in the donor. These are
98 defined here as human cells and tissues for medical use (HCTs). Examples of HCTs include
99 hematopoietic stem cells for the treatment of hematological malignancies, corneas to restore
100 sight, and skin grafts to treat burn victims. They may be derived from living donors (such as
101 hematopoietic stem cells) or from the deceased (such as heart valves, cornea, and skin grafts),
102 and the number and type of novel HCTs is increasing steadily with advances in medicine. HCTs
103 typically are regulated under transfusion or transplantation rules, for which the main focus is to
104 ensure the quality and safety of the donated material (2,3). In addition, donor protection,
105 traceability and ethical issues of cell, tissue, and organ donation are central parts of HCT
106 regulations (4).

107

108 Advanced therapy medicinal products (ATMPs) for human use are defined as cell and gene
109 therapy products and tissue engineered products, which are produced not only from manipulated
110 cells or tissues. ATMPs also include nucleic acids or suitable vectors like plasmids or viruses for
111 either direct administration to a recipient or to isolated cells or tissues (3,5). ATMP product types
112 are highly diverse and can include expanded autologous (patient) cells, engineered organs, viral
113 products, genetically modified cells and novel gene editing/edited products (6,7) (see Table 1).
114 ATMPs can also be combined with medical devices, such as scaffolds or matrices, as an integral
115 part of the product (combined ATMPs). This variety of product types gives ATMPs the potential
116 to address a wide range of unmet medical needs and may present inherent advantages over some
117 existing treatments and current standards of care. These products are emerging rapidly as
118 potentially curative treatments that could transform the management of diseases such as
119 thalassemia, sickle cell disease, hemophilia, spinal muscular atrophy, Leber's congenital
120 amaurosis and many other monogenic diseases (8).

121

122 ATMPs have unique issues in their development processes that distinguish them from other
123 pharmaceutical or biotherapeutic products. As a result, ATMPs can differ from other medicinal
124 products in their requirements for manufacture and quality control, nonclinical assessment,
125 clinical development, and post-market monitoring (9). An understanding of these issues is crucial
126 for the development and establishment of a tenable regulatory framework for the oversight of
127 these products.

128

129 ATMP manufacturing issues can stem from the origin and sourcing of the starting materials,
130 which are commonly HCTs, and the manipulation processes the starting material undergoes to
131 generate the therapeutic product. For cells and tissues, as well as for nucleic acids and viral
132 vectors, these methods can be complex and require specialized facilities and techniques for
133 product manufacturing and formulation (10). That is the case particularly for genetically
134 modified cells and directly administered gene therapy products. Therefore, manufacturing
135 facilities for ATMPs are usually separate from that where the starting materials are obtained and
136 processed and as such will require their own licensing for operation. In addition, any medical
137 device used as part of a combined ATMP or in the administration of an ATMP also requires
138 compliance with manufacturing and marketing regulations.

139

140 The nonclinical testing of ATMPs can be challenging for many new indications and especially
141 for orphan diseases. These challenges include finding appropriate *in vitro* systems or animal
142 models (11) and limitations resulting from inherent differences in the immune systems of animal
143 species and humans. For cell-based therapies where multiple receptor-ligand interactions occur
144 between the administered cell product and the surrounding host tissue, the physiological outcome
145 of these interactions can differ between species. Thus, whether evaluating an allogeneic or
146 xenogeneic product within an *in vivo* model, there are likely to be differences in responses
147 between the animal and the human. Similarly, viral vectors pose their own difficulties when
148 studied in animal models as they can differ in their tropism and will not necessarily infect all
149 species. Cell-based immunotherapies with or without concurrent genetic modification pose,
150 perhaps, the greatest challenge in their nonclinical assessments due to the exquisite specificity of
151 the immune system, and in-built mechanisms of host defense. Furthermore, for therapeutic
152 products which utilize genome editing technology, their nonclinical testing requires the use of
153 human cells to evaluate potential off-target effects.

154

155 Clinical development of HCTs and ATMPs require special regulatory considerations. This may
156 include accounting for the lack of adequately documented natural history data for rare diseases as
157 well as the need to evaluate clinical safety and efficacy in very small patient populations.
158 Furthermore, interpretation of efficacy from controlled clinical trials for some ATMPs may be
159 difficult if there is no suitable comparator or if the improvement in the recipients is minimal in

160 response to the treatment. Some ATMP products, such as systemically-administered integrating
161 gene therapy products, may have effects that last for years or decades. Under these
162 circumstances, it is important to ensure adequate long-term patient follow up, which itself
163 imposes its own difficulties in product development (12).

164

165 Regardless of their regulatory expertise and maturity level, countries in all regions of the world
166 are receiving – or have received – regulatory submissions from companies or non-profit
167 organizations interested in providing access to these potentially transformative products which
168 can have significant public health impact. It is important for authorities to be aware of the
169 regulatory considerations, challenges and needs for adequate data support for these products and
170 address them to assure the safety and efficacy of the treatments and avoid unnecessary delays in
171 patient access.

172

173 Due, in part, to the varied nature of HCTs and ATMPs, it is not surprising that national or
174 regional regulatory frameworks for oversight of these products have evolved somewhat
175 differently around the world. However, despite any differences, all are intended to confer at least
176 minimum standards to protect the donors and ensure the safety and effectiveness of the
177 administered products. The regulatory frameworks are based on sound scientific and ethical
178 principles and include the requirement for a comprehensive evaluation of risks vs benefits that
179 are applicable to the different categories of HCTs and ATMPs.

180

181 Effective regulatory decision making will depend on establishing strong, risk-based regulatory
182 frameworks for the oversight of cell and gene therapy products. The key elements of an effective
183 regulatory framework include:

184 • a clear definition of the categories that constitute HCTs and ATMPs,
185 • a risk stratification of the HCTs and ATMPs and,
186 • aligning the level of regulatory control based to the different risk categories.

187 In most regulatory jurisdictions with existing legislations and regulations applicable to ATMPs,
188 they are regulated as medical products to ensure quality, safety and efficacy before authorization
189 for use in the patient population. The regulatory requirements for ATMPs differ based on the
190 stage of development with stringency increasing as more knowledge is gathered about the
191 product and its safety and efficacy, and the product moves from investigational to commercial
192 use. For HCTs, the regulations concentrate on the control of possible transmission of
193 communicable diseases and contaminants as well as the quality and safety for their intended use
194 (2,13), whereas the regulatory expectations for ATMPs also include requirements to address the
195 additional risks inherent in complex, highly manipulated products (14-21). Additionally, it is
196 important to ensure that appropriate long-term post-market surveillance systems are in place,

197 particularly where the effects of ATMPs are expected to last for many years. In all cases,
198 regulatory decisions for HCTs and ATMPs are based on the totality of the available information
199 and a comprehensive benefit/risk assessment during the development phase as well as post-
200 authorization.

201
202 Development of a regulatory framework for oversight of HCTs and ATMPs should take into
203 consideration the regulatory authority's maturity level, staff experience and expertise in
204 evaluating products in the different risk categories, and available resources for initial assessment
205 and life-cycle oversight. National regulatory authorities (NRAs) with limited experience in
206 reviewing applications for HCTs and ATMPs, or with limited resources are encouraged to have,
207 as an integral part of their regulatory framework, mechanisms to practice evidence-based
208 reliance on the assessments and decisions of trusted partners and NRAs with more longstanding
209 experience and expertise in the review of these products. Utilization of regulatory reliance will
210 help ensure increased global access to safe and effective cell and gene therapy products. As
211 NRAs gain experience and expertise, they can review more complex applications in alignment
212 with their increased capacity and resources.

213

214 **Purpose**

215

216 The goal of WHO is to promote regulatory convergence for HCTs and ATMPs to facilitate
217 development and access to these treatments and products, including through the practice of
218 reliance, for patients in all regions of the world. In addition, the aim is to increase the safety of
219 patients treated with HCTs or ATMPs by preventing exploitation from occurring in those
220 jurisdictions without, or with inadequate regulations in place for providing oversight of the safety
221 and efficacy of such novel products (22,23).

222

223 At the 2018 International Conference of Drug Regulatory Authorities (ICDRA) meeting (24),
224 Member States noted the potential impact of HCTs and ATMPs for global public health and the
225 need, especially in LMICs, to build scientific knowledge and strengthen their regulatory capacity
226 to provide oversight of these novel products. The following areas were identified as priorities:

227

- 228 • Defining what HCTs and ATMPs are (what is in scope and what is out of scope)
- 229 • Developing regulatory requirements for HCTs and ATMPs which are based on sound
230 scientific and risk-based principles
- 231 • Convergence on establishing minimum global standards for ATMPs

232

233 The ICDRA recommendation was for "WHO to develop with Member States a 'current state of
234 the art' document capturing areas where agreement among experienced regulatory authorities

235 exists, noting where harmonization has yet to be achieved, and documenting existing areas of
236 uncertainty. Areas covered could include definitions, quality attributes, standards, and clinical
237 development pathways.” (24)

238

239 The priorities that Member States identified are to:

240

- 241 1. Clearly describe what the categories of HCTs and ATMPs are and provide definitions of key
242 terminology relevant in this area;
- 243 2. Summarize the existing state of ATMPs that are approved or under development, including
244 examples of challenges in the development and where solutions have been identified;
- 245 3. Describe some key elements of a regulatory framework that support the quality, safety and
246 effectiveness of HCTs and ATMPs including:
 - 247 a. regulatory requirements for different risk categories of products,
 - 248 b. the need for adequate oversight of products through their entire lifecycle from the
249 investigational phase through to post-market surveillance;
- 250 4. Develop a proposal for how the regulatory framework for the risk categories could be
251 implemented in countries with different levels of regulatory maturity, and;
- 252 5. Provide an annotated bibliography to highlight key references relevant to the manufacture,
253 product development, and regulation of ATMPs.

254

255 The WHO Expert Committee on Biological Standardization (ECBS) also recognized that HCTs
256 and ATMPs have great potential in the treatment of various diseases and would become
257 important future public health interventions (25). The Committee had a clear consensus that
258 global convergence for HCTs and ATMPs is needed and that WHO should continue
259 collaboration with other international groups active in this area (26-28).

260

261 This document is a first step in responding to the ICDRA and ECBS recommendations and
262 outlines the priorities and next steps, as identified by regulators from both developed and
263 developing countries, for advancing global convergence on the regulation of HCTs and ATMPs.
264 It also emphasizes the importance of Member States strengthening their regulatory systems for
265 oversight of these products. Some of the issues identified as priorities by Member States are
266 addressed in this document. WHO will expand on this foundation and provide guidance on other
267 priority areas in future documents.

268

269 **Terminology**

270

271 The definitions given below apply to the terms as used in this WHO document. These terms may
272 have different meanings in other contexts, or in other international or regional regulatory

273 documents. It should be noted that when reference is made to cells in this document, anucleated
274 cells like red blood cells and platelets are excluded.

275

276 **Allogeneic:** referring to cells donated by one person and used to treat another person

277

278 **Autologous:** referring to a patient's own cells

279

280 **Cell therapy product:** A product composed of human nucleated cells intended for the treatment
281 or prevention of human diseases or physical conditions, through the pharmacological,
282 immunological or metabolic action of its cells or tissues. Isolated substances from the cells such
283 as exosomes are excluded from this definition.

284

285 **Combined ATMPs:** ATMPs that include a medical device(s) as an integral part of the product
286 where the device has a role/function in the product's overall effect and is not intended to be
287 removed nor used solely for administration purposes (such as syringes, catheters, etc.).

288

289 **Ex vivo gene therapy product:** Refers to a **gene therapy product** where cells are genetically
290 modified before being given to the patient.

291

292 **Gene editing:** The use of guide RNA, which targets a nuclease enzyme to the site in the genome
293 to be cleaved. The most commonly used approaches currently are based on zinc finger nucleases
294 (ZFN), transcription activator-like effector nucleases (TALEN) or clustered regularly
295 interspersed short palindromic repeats (CRISPR) together with Cas9-endonuclease (CRISPR
296 Cas9) (29).

297

298 **Gene therapy product:** A product composed of nucleic acids with the intention to regulate,
299 repair, replace, add or delete a genetic sequence. The intended therapeutic effect is directly
300 linked to the nucleic acid and its use. Gene therapy products include non-viral (plasmids, mRNA,
301 DNA-based) and viral vectors that are used *in vivo* as well as cells that have been modified by
302 such vector's *ex vivo*.

303

304 Within this definition, gene edited products are considered as gene therapy products. However,
305 prophylactic vaccines for infectious diseases (e.g., mRNA, plasmid DNA, or viral-vectorized
306 vaccines) are excluded from this definition and are not considered to be gene therapy products. It
307 is noted that definitions of gene therapy products may vary between regulatory authorities.

308

309 **Homologous use (same essential function/s):** The concept that the essential functions of the
310 cells or tissues in the recipient are the same, or highly similar, to their functions in the donor. For

311 example, infusion of bone marrow cells for hematopoietic reconstitution would be considered
312 homologous use. In contrast, use of adipose tissue-derived mesenchymal stromal cells (MSCs)
313 for treatment of osteoarthritis, other musculoskeletal conditions, or diseases of the nervous
314 system, lung, or other non-adipose tissues are considered non-homologous use.

315

316 ***In vivo gene therapy product:*** Refers to a nucleic acid product (e.g., DNA/RNA, plasmid,
317 virus) administered directly into the patient, and excludes prophylactic vaccines intended to elicit
318 an immune response to prevent infectious diseases.

319

320 **Minimal manipulation:** The concept that the cells or tissues do not undergo processing steps
321 that could alter the characteristics, structural properties, functionality or the risk profile of the
322 cells or tissues. Acceptable cell or tissue processing steps might include sizing, rinsing, or
323 washing with solutions such as saline. For example, rinsing a harvested tissue in normal saline to
324 remove debris from the harvested material prior to storage would constitute minimal
325 manipulation. Depending on local legal frameworks, minimal manipulation of cells/tissues also
326 may allow other processing steps such as cutting, grinding, centrifugation, antibiotic treatment,
327 washing, sterilization/irradiation, cell separation, concentration, filtering, cryopreservation etc.
328 However, in all cases, it is expected that such processing does not involve any cell division or
329 altering relevant biological attributes of the cells or tissues.

330

331 **Regulatory convergence:** A voluntary alignment of regulatory approaches and requirements
332 across countries and regions as a result of the gradual adoption of international technical
333 guidance documents and standards, and internationally recognized scientific principles, practices,
334 and procedures to achieve a common public health goal.

335

336 **Regulatory framework:** The collection of laws, regulations, guidelines, and other regulatory
337 instruments through which a government controls medicinal product manufacturing, clinical
338 evaluation, marketing, promotion and post-market safety monitoring.

339

340 **Regulatory harmonization:** A process by which technical guidance documents are developed to
341 achieve uniformed regulatory requirements among participating jurisdictions.

342

343 **Tissue engineering product:** A product composed of nucleated human cells that are intended
344 for repair, replacement or regeneration of tissues. Tissue engineered products use cells to form
345 structured tissues, often using natural or artificial scaffolds such as extracellular matrix proteins.
346 Some tissue engineered products may incorporate medical devices.

347

348 **Xenogeneic:** referring to cells originating from one species and used to treat individuals of
349 another species.

350

351 **Classification of HCTs and ATMPs**

352

353 Minimal manipulation and homologous use are the concepts that have been embraced by
354 multiple regulatory authorities for making the distinction between HCTs and ATMPs (see
355 clarifications of the definitions in the Terminology section) (2,3,18,20,30). For the purposes of
356 this document, cells and tissues that are harvested and undergo only minimal manipulation
357 (simple processing such as washing or sizing), and which are used to achieve the same essential
358 function/s in the recipient as in the donor (homologous use) are defined as human cells and
359 tissues for medical use or 'HCT'. Cells or tissues that are minimally manipulated fall into a
360 lower risk category and the regulatory requirements focus on ensuring quality and safety of the
361 cells and tissues and the protection of recipients and donors in compliance with the ethical
362 principles (Table 1). The regulations for HCTs primarily aim to prevent possible disease
363 transmission and mitigate risks caused by origin, harvesting and processing of the cells / tissues.
364 When the intention is homologous use of the HCTs, product specific clinical studies are usually
365 not required.

366

367 HCTs also provide the starting material for those ATMPs based on cells or tissues, and so need
368 to comply with the regulatory requirements applied to the donation of these materials. The
369 complexities of ATMPs over HCTs arise because they require controlled manufacturing
370 processes with significant manipulation of the cellular or genetic starting material and can
371 include expansion and/or purification steps (Table 1). In addition, their safety and efficacy
372 cannot be predicted without well-controlled studies due to the biological complexity of cells and
373 tissues, and since their structure and/or function may be changed by the manipulation and the
374 production processes. Therefore, ATMPs require comprehensive regulation and demonstration of
375 safety and efficacy with robust data to show good product quality, biological activity (22) and
376 manufacturing consistency prior to marketing authorization (see currently available guidance for
377 ATMPs in the Appendix). In addition, the regulations for ATMPs based on replicating viral
378 vectors and oncolytic viruses should include separate considerations to address the potential for
379 their release into the environment and induction of viral disease in, or transmission to, third
380 parties. Strategies need to be in place to mitigate the risk of such an occurrence; therefore,
381 products consisting of, or containing, replicating viral vectors should be subject to an
382 environmental assessment to evaluate the potential adverse effects that could occur if the viral
383 vector is released into the environment.

384

385 It should also be noted that the risk profiles of HCTs and ATMPs are not always clear or easy to
386 address. For example: the use of fresh vs. frozen cells/tissues may have significant impact on the
387 outcome of the treatment; or the risks of using a vector can differ depending on whether it is used
388 *in vivo* or for *ex vivo* transduction. The risk identification should also take into account the level
389 of knowledge (e.g., biology of cells and tissues and their normal functionality), paying special
390 attention to products used for the first time, and where there is limited or no knowledge of their
391 safety or efficacy in humans.

392

393 The wide range of products with varying risk profiles that constitute ATMPs requires
394 consideration in their regulation as a class overall. Due to the substantial manipulation required
395 for most ATMPs, controlled manufacturing processes are required to ensure both product
396 consistency and quality. This includes assurance of product identity, purity, biological activity,
397 and freedom from adventitious agents (e.g., viruses or TSE). Therefore, an important aspect in
398 the development of ATMPs is the identification of critical quality attributes (CQAs) for each
399 product. CQAs consist of physical, chemical, biological, and/or microbiological properties or
400 characteristic(s) of a product that should be within an appropriate limit, range, or distribution to
401 ensure the desired product quality. An example of a CQA could be a specific cell surface marker,
402 determined by a methodology such as flow cytometry, that should be present on a minimum
403 percentage of a certain cell type in the product. Ideally, CQAs would correlate with clinical
404 outcome, although this is not always possible or feasible as ATMPs are most likely to have
405 multiple CQAs.

406

407 Long-term safety and efficacy follow-up of individuals treated with ATMPs can present
408 challenges because these products may exert long-term effects following even a single
409 administration. For example, Lentivirus vector-transduced CD34+ cells that are systemically
410 administered to correct a genetic defect could exert their effect for years through the integrated
411 presence of the vector in cells. Thus, the risk of insertional mutagenesis should be addressed in
412 non-clinical and clinical studies and the safety surveillance monitoring systems that allow longer
413 term follow-up of all treated patients should be in place to identify any emerging serious adverse
414 events, including the development of malignancy (31). The duration of such safety surveillance
415 needs to be carefully considered to ensure the optimal collection of events without being unduly
416 burdensome for the patients receiving the gene therapy products.

417

418 **Regulatory expectations of HCTs and ATMPs**

419

420 Working towards global convergence on regulatory expectations for HCTs and ATMPs, and
421 ultimately regulatory harmonization, will facilitate global access to these potentially
422 transformative products. Harmonization of regulations and regulatory expectations is a key to

423 supporting timely product development and access, in part, because it allows product developers
424 to submit regulatory applications more efficiently and cost-effectively across different
425 jurisdictions.

426

427 As an initial step towards convergence, it is useful to consider cell-, tissue- and gene-based
428 therapies and products as being in one of two broad categories based on their risks from
429 processing or manufacturing:

430

- 431 1. HCTs where the minimal processing of the cells or tissues places them in a lower risk
432 category and do not usually require pre-market approval, or;
- 433 2. ATMPs which require complex manufacturing steps or are composed of cells not being used
434 for the same essential functions, fall into a higher risk category and require pre-market
435 authorization.

436

437 This determination is made by addressing some fundamental questions:

438

- 439 • is the product a gene therapy?
- 440 • does the product contain nucleated cells?
- 441 • is the product minimally manipulated? and
- 442 • is the product intended for homologous use?

443

444 Application of these questions in classifying these products is shown schematically in Figure 1.

445

446 HCTs do not usually require marketing authorization but their donation, processing and
447 transplantation generally must be authorized by competent authorities to ensure their quality,
448 safety as well as the protection of donors and recipients. In addition, the facilities and
449 establishments dedicated to the procurement and processing of HCTs may also require
450 approval/licensing by competent authorities. The use of HCTs for the treatment of diseases or
451 physiological conditions may require approval from a local or institutional ethics committee and
452 often the information on effectiveness of the treatment is collected through clinical studies and/or
453 registries.

454

455 For ATMPs across a spectrum of complexities and risks (see Table 1), regulations with stringent
456 requirements on product quality, safety and efficacy, and assuring manufacturing consistency
457 have been established in many jurisdictions. For those countries developing regulatory
458 frameworks for HCTs and ATMPs, it is strongly recommended to ensure the regulations are
459 aligned with any other relevant regulations that may already be established in the jurisdiction,
460 such as those for medical devices.

461

462 **A risk-based approach for the regulatory oversight of HCTs and** 463 **ATMPs**

464

465 Although HCTs and ATMPs have the potential to bring tremendous benefit to individuals in
466 medical need, they also have the potential to cause serious harm if not prepared and used
467 properly, or not supported by adequate data. For ATMPs in particular, developers may benefit
468 from seeking regulatory guidance before initiating clinical studies to ensure the risks are
469 identified and appropriately mitigated. There needs to be careful consideration of product
470 development and deployment under appropriate regulatory oversight. The maturity of the
471 regulatory systems for oversight of HCTs and ATMPs varies widely among high-, middle-, and
472 low-income countries. The conduct of investigational studies or deployment of these products,
473 especially ATMPs, without appropriate regulatory oversight and adequate safety monitoring can
474 result in severe adverse outcomes for recipients. Similarly, a failure to ensure the containment of
475 ATMPs manufactured with replicating viral vectors could pose a risk to third parties and/or to
476 the environment. Thus, regardless of the regulatory experience and maturity level, it is critical
477 for all regulatory authorities to be familiar with the potential risks and regulatory considerations
478 for HCTs and ATMPs, and the appropriate level of regulation required in each case. This is
479 essential to prevent patients from getting treatments and therapies that have no proven benefit
480 and to ensure their authorization by a competent regulatory authority that has evaluated the
481 product's quality, safety, and efficacy.

482

483 A scientifically sound, risk-based approach is a practical way to regulate HCTs and ATMPs and
484 has been adopted in most of the existing national and international guidelines. A risk-based
485 approach is built on identifying the various risks and risk-factors that may impact quality, safety
486 and efficacy of the product, taking into consideration risk factors that may be inherent to the
487 HCT or ATMP, and assuring those risks are mitigated. Since HCTs and many ATMPs are
488 derived or prepared from living organisms or are themselves living organisms, the risk of
489 infectious disease transmission is a fundamental concern and must be mitigated. Additional
490 potential risks can vary and are largely dependent on the cells or tissues, or ATMP type. These
491 may include, for example, the need for appropriate HLA matching in certain transplants and
492 applications, and considerations on the potential immunogenicity, tumorigenicity, genotoxicity,
493 and integrational mutagenesis potential of the product.

494

495 Manipulation of cells and tissues can increase the risks of their transformation and
496 tumorigenicity, but also of unwanted immunogenicity and other severe toxicities (32,33). Many
497 gene therapy products are manufactured using recombinant forms of common viruses, which as
498 wild type viruses can be human pathogens. Therefore, gene therapy vectors are usually

499 constructed so they do not contain the parts of their native genomes that make them pathogenic
500 or allow them to replicate. However, there remains other risks associated with gene therapy
501 products, including replication competent virus contaminants, undesired immunogenicity and
502 insertional mutagenesis leading to tumourigenicity. Good manufacturing practices, proper
503 analytical testing, and adequate non-clinical and clinical studies are required to identify and
504 mitigate as many of the risks as possible to ensure patient safety.

505

506 For cells and tissues destined for allogeneic transplantation, it is critical that proper measures are
507 in place to screen the donors of cells and tissues (either living or deceased/cadaveric) for
508 potential infectious diseases, and to conduct appropriate testing of the cells or tissues for the
509 most relevant infectious agents that might be associated with disease transmission to the
510 recipient. These tests generally include those for certain viruses, such as hepatitis B, hepatitis C,
511 and human immunodeficiency virus (HIV), as well as other infectious agents that may be locally
512 or globally relevant.

513

514 The entities that collect and distribute HCTs are generally registered by the regulatory authority
515 overseeing them. Registration involves at minimum collection of the name and physical location
516 of the establishment providing the HCTs, as well as a detailed list of the different cells or tissues
517 being offered by the establishment. In addition, there should be verification that the collection,
518 processing and medical use of the HCTs do not pose other risks and that the HCTs offered do not
519 meet the criteria of ATMPs that would require authorization as medical products. This facilitates
520 implementation of systems for tracing products from donor to recipient, which will be important
521 if an infectious agent is identified or suspected in either the donor or recipient of the HCTs. It
522 also facilitates the ability to recall entire lots or classes of products in a timely manner, in the
523 event issues such as bacterial or viral contamination are identified.

524

525 ATMPs require the same risk-based approach as HCTs to prevent the transmission of infectious
526 diseases and the mitigation of any other potential risks which may be inherent in the product. In
527 addition, ATMPs require compliance with other key regulatory practices including:

528

- 529 • **Good Manufacturing Practices (GMP)** to ensure that the ATMPs used for clinical trials
530 and commercial production are manufactured under a quality management system with
531 appropriate quality controls, including product comparability assessments following process
532 changes;
- 533 • **Good Laboratory Practices (GLP)** are used where possible in safety and other non-clinical
534 studies used to generate pharmacodynamic (PD), pharmacokinetic (PK), biodistribution and
535 safety data for the products to ensure the risks are understood and mitigated before use in
536 humans;

537 • **Good Clinical Practices (GCP)** are applied to all clinical studies with proper design and
538 control to ensure the collection of robust and reliable safety and efficacy data for the products
539 and appropriate long-term follow-up of the patients.

540

541 These aspects require that the regulatory authorities must have the capacity and expertise to
542 evaluate and authorize clinical trial applications, marketing authorization applications and
543 oversee post-marketing surveillance to monitor long-term safety and efficacy of the authorized
544 ATMPs. In addition, the GXP quality systems require the skill and capacity by the regulatory
545 authority and/or its inspectorate to perform necessary inspections to ensure compliance with
546 GMP, GLP, and GCP.

547

548 **Considerations in the development of a regulatory framework**

549

550 The diversity of HCTs and ATMPs may require tailoring of the regulatory framework to adapt to
551 the range of products that a country may authorize for use within its jurisdiction. Use of HCTs
552 that do not require premarket authorization can potentially be administered in settings with less
553 experienced regulatory systems as long as the appropriate regulations are in place to ensure that
554 transmission of infectious diseases is minimized, donor rights and ethical issues are controlled,
555 the HCTs are of appropriate quality and safety factors have been considered for the intended use.
556 It also is important to ensure that mechanisms are in place for both ethical and inspectional
557 oversight and so the products can be traced and recalled if necessary. Under those circumstances,
558 countries can potentially authorize the use of HCTs even in situations where there may be
559 limited resources.

560

561 Several options exist for the oversight of ATMPs which due to their risks, manufacturing
562 complexity and intended use, require clinical trials and demonstration of safety and efficacy
563 before authorization for use. For jurisdictions with minimal experience in the regulation of
564 ATMPs and with less well-developed safety surveillance systems, it could be possible to have
565 cell therapy or tissue engineered products marketed following a review process that leads to local
566 approval (e.g., at the regional level) based on sufficient data. Jurisdictions with limited resources
567 and experience with ATMPs also could rely on review assessments from jurisdictions with
568 greater experience in regulating ATMPs. For jurisdictions that already have some experience
569 with cell therapy and tissue engineering products and have an adequate safety surveillance
570 system in place, it may be feasible to review and approve less complex ATMPs that do not have
571 significant risks. For jurisdictions with more extensive experience with the approval of simple
572 ATMPs and which have established safety surveillance systems, it may be reasonable to allow
573 the investigational use of these products in clinical trials locally under an appropriate regulatory
574 framework and with ethics committee oversight. These regulatory authorities may also review

575 marketing applications for those ATMPs and make decisions regarding approval. There are
576 intermediate states between these various options that a jurisdiction could consider.

577

578 **Collaboration and strengthening regulatory capacity globally for 579 oversight of HCTs and ATMPs**

580

581 Depending on the maturity level of the regulatory authority and its expertise and available
582 resources, it may benefit from collaborating with a more experienced regulatory authority. WHO
583 encourages regulatory cooperation and reliance between authorities and other entities that have a
584 role in the oversight of HCTs and ATMPs. Existing opportunities for joint reviews and
585 inspections, agency visits, collaboration for review of products for rare/ulrarare diseases,
586 regulatory actions based on reliance etc. could be further expanded. Sharing of knowledge,
587 expertise, and experience is crucial for strengthening global regulatory capacity for oversight of
588 HCTs and ATMPs in all regions of the world.

589

590 To increase access to quality-assured, safe and effective ATMPs, collaboration between
591 regulators regionally and globally is encouraged to leverage their resources more efficiently.
592 Convergence of regulatory requirements in different jurisdictions increases efficiencies and
593 promotes opportunities for reliance. Such regulatory reliance is even more critical for promoting
594 access to ATMPs since presently, regulators in many countries have limited or no experience
595 with authorization of these products.

596

597 Collaboration among regulators currently takes place through regulatory networks that promote
598 cooperation for carrying out various regulatory functions for medical products. For example, the
599 African Vaccine Regulatory Forum (AVAREF) is a platform that brings together regulators from
600 the region to conduct joint reviews of clinical trial applications (34). The WHO collaborative
601 registration procedure (CRP) facilitates the marketing authorization of WHO-prequalified
602 medical products approved by a stringent regulatory authority. ASEAN member states have
603 developed the ASEAN Joint Assessment Procedure for marketing authorizations (35). The
604 Access consortium brings together regulators from five countries to conduct joint reviews of
605 regulatory applications for medical products (36). For exchanges and sharing pharmacovigilance
606 data, WHO member states benefit from the safety information of medical products from the
607 WHO database (37). PIC/S increases mutual confidence in GMP inspections among member
608 countries. Such networks can also be used to promote collaboration for review, authorization,
609 and regulatory oversight of cell and gene therapy products.

610

611 **Conclusion and next steps**

612

613 As more jurisdictions deploy HCTs and ATMPs for use in their populations, it is important that
614 the dialogue among regulators continues in order to promote the global alignment of regulatory
615 requirements. These collaborations and exchanges can be facilitated by the WHO as well as
616 through other international organizations such as the Asian-Pacific Economic Co-operation
617 (APEC) (38) and the International Pharmaceutical Regulators Programme (IPRP) (39), with the
618 goal of further regulatory convergence and ultimately harmonization.

619

620 Five key priorities had been identified by Member States to strengthen regulatory capacity for
621 oversight of cell and gene therapies and advance global convergence on the regulation of HCTs
622 and ATMPs. This document is a step towards addressing those priorities through the provision of
623 definitions for key terms relevant to cell and gene therapies, the categorization of HCTs and
624 ATMPs, describing key elements that are important for establishing an effective regulatory
625 framework, and provision of an annotated bibliography with key references and resources that
626 are relevant to the manufacture, development and regulation of cell and gene therapies. To build
627 on the fundamental concepts outlined in this document, the WHO will work to identify key
628 issues in the areas of HCTs and ATMPs across its Member States in order to prioritize the
629 development of specific guidance documents and case studies that can facilitate expanding the
630 knowledge base and sharing of best practices among regulators.

631

632 The growing number of authorized cell and gene therapies is a testament to the potential these
633 products have in addressing unmet medical needs for a wide range of diseases or to improve on
634 existing treatments. Scientific knowledge and technology in this field is advancing rapidly and
635 regulators can expect to receive increasing numbers of submissions for complex and novel cell
636 and gene therapy products in the future. Establishing effective regulatory frameworks and
637 investing in strengthening regulatory capacity for oversight of cell and gene therapies will be
638 crucial for assuring their safety and efficacy for use in the population. Global alignment on the
639 regulatory requirements for HCTs and ATMPs is critical for promoting their efficient
640 development, timely authorization in different jurisdictions, and ensuring a more equitable
641 access in all regions of the world.

642

643 **Acknowledgements**

644

645 Drafting of this WHO document was initiated by a WHO Working Group meeting held on 20–21
646 February 2020, Geneva, Switzerland, and attended by: E. Abranches, National Institute for
647 Biological Standards and Control, United Kingdom; G. Jotwani, Indian Council of Medical
648 Research, India; P. Marks, United States Food and Drug Administration, USA; Y. Maruyama,
649 Pharmaceuticals and Medical Devices Agency, Japan; F. C. Melo and R. M. Parca, National
650 Health Surveillance Agency, Brazil; G. Raychaudhuri, United States Food and Drug

651 Administration, USA; I. G. Reischl, Federal Office for Safety in Health Care, Austria; I.
652 Knezevic and S.H. Yoo, World Health Organization, Switzerland.
653
654 Based on the outcome of that working group meeting, the preliminary draft was prepared by P.
655 Marks and G. Raychaudhuri, United States Food and Drug Administration, USA; I. Knezevic
656 and S.H. Yoo, World Health Organization, Switzerland. The preliminary draft was then subject
657 to review by the Working Group and C. A. Bravery, Consultant, the United Kingdom; I. U. Oh,
658 Ministry of Food and Drug Safety, the Republic of Korea; P. Salmikangas, Consultant, Finland;
659 J. Wang, National Institutes for Food and Drug Control, People's Republic of China. Considering
660 the feedback from the Working Group, the resulting first draft was posted on the WHO
661 Biologicals website from 20 December 2021 to 24 January 2022 for a first public consultation.
662
663 An informal consultation on the first draft of this document was held virtually on 7-9 February
664 2022, attended by: WHO Working Group: C. A. Bravery, Consultant, the United Kingdom; G,
665 Jotwani, Indian Council of Medical Research, India; P. Marks, United States Food and Drug
666 Administration, the USA; Y. Maruyama, Pharmaceuticals and Medical Devices Agency, Japan;
667 F. C. Melo, National Health Surveillance Agency, Brazil; I. U. Oh, Ministry of Food and Drug
668 Safety, the Republic of Korea; R. M. Parca, National Health Surveillance Agency, Brazil; G.
669 Raychaudhuri, United States Food and Drug Administration, the USA; I. G. Reischl, Federal
670 Office for Safety in Health Care, Austria; P. Salmikangas, Consultant, Finland; J. Wang,
671 National Institutes for Food and Drug Control, People's Republic of China; K. Warre-Cornish,
672 National Institute for Biological Standards and Control, United Kingdom. State-actors: J.
673 Arcidiacono, US Food and Drug Administration, the USA; C. Buchholz, Paul-Ehrlich-Institut,
674 Germany; B. Domínguez-Gil, National Transplant Organization, Spain; M. L. Fraga, European
675 Directorate for the Quality of Medicines, France; S. Kellathur, Health Sciences Authority,
676 Singapore; M. BC Koh, National Blood Bank, Singapore; C. Milne, European Directorate for the
677 Quality of Medicines, France; L. L. Ong, Health Sciences Authority, Singapore; Z. Park,
678 Ministry of Food and Drug Safety, the Republic of Korea; M. Rosu-Myles, Health Canada,
679 Canada; S. Van Der Spiegel, European Commission. Observers from non-state actors in official
680 relations: F. Atouf, United States Pharmacopeia, the USA; Kowid Ho, Roche, Switzerland; J.
681 Jacques, United States Pharmacopeia, the USA; C. Koerner, Novartis, the USA; G. Stacey and J-
682 H Trouvin, International Alliance of Biological Standardization, Switzerland. Representation
683 from intergovernmental and other entities: K. Francissen, Roche, the USA; I. Irony, Janssen, the
684 USA; K. Nichols, International Society for Cell and Gene Therapy, the USA; G. O' Sullivan,
685 International Society for Cell and Gene Therapy, Australia; K. Quillen, Boston University, the
686 USA. WHO staff: C. Ondari, E. Chatzixiros, R. G. Balocco, U. Loizidesi, Y. Maryuningsih, I.
687 Knezevic and S. H. Yoo, World Health Organization, Switzerland.
688

689 Based on the public consultation and the outcomes of the above informal consultation, the
690 second draft was prepared by the Working Group with critical input from P. Salmikangas,
691 Consultant, Finland, and S.H. Yoo and R.A. Isbrucker, World Health Organization, Switzerland.
692

693 **References**

- 695 1. Regulation of Advanced Therapy Medicinal Products: concept note and recommendations”,
696 Ninth Conference of the Pan American Network for Drug Regulatory Harmonization
697 (PANDRH) (San Salvador, 24 to 26 October, 2018). Available from
698 https://iris.paho.org/bitstream/handle/10665.2/51558/pahohss19004_eng.pdf?sequence=1&isAllowed=y
- 700 2. FDA Guidance for Industry HCT- and CTB products, minimal manipulation and homologous
701 use. Available from <https://www.fda.gov/media/109176/download>
- 702 3. Regulation (EC) No. 1394/2007 of the European Parliament and of the Council on Advanced
703 Therapy Medicinal Products and amending Directive 2001/83/EC and Regulation (EC) No.
704 726/2004. OJ L 2007;324:121–137. Available from
705 https://ec.europa.eu/health/sites/default/files/files/eudralex/vol-1/reg_2007_1394/reg_2007_1394_en.pdf
- 707 4. Ashford, P., Chapman, J., Hildebrandt, M., Noël, L., Pruitt, T., Slaper-Cortenbach, I. and
708 Wilson, D. Establishing consensus on ethics, traceability and biovigilance for medical
709 products of human origin. Bull World Health Organ. 2021 Dec 1; 99(12): 907–909.
- 710 5. Alliance for Regenerative Medicine Annual Report 2020. Available from
711 <https://alliancerm.org/sector-report/2020-annual-report/>
- 712 6. Rao M, Mason C, Solomon S. Cell therapy worldwide: an incipient revolution. Regen Med.
713 2015; 10(2):181-91.
- 714 7. High KA, Roncarolo MG. Gene Therapy. N Engl J Med. 2019;381(5):455-464. doi:
715 10.1056/NEJMra1706910.
- 716 8. Cicalese MP, Aiuti A. New perspectives in gene therapy for inherited disorders. Pediatr
717 Allergy Immunol. 2020;31 Suppl 24:5-7. doi: 10.1111/pai.13149.
- 718 9. Rousseau, C.F., Mačiulaitis, R., Ślądowski, D., and Narayanan, G. Cell and Gene Therapies:
719 European View on Challenges in Translation and How to Address Them Front. Med 2018;
720 5:158. doi: 10.3389/fmed.2018.00158
- 721 10. Salmikangas P, Menezes-Ferreira M, Reischl I, et al. Manufacturing, characterization and
722 control of cell-based medicinal products: challenging paradigms toward commercial use.
723 Regen Med. 2015;10(1):65-78. doi: 10.2217/rme.14.65.

724 11. U.S. FDA: Preclinical Assessment of Investigational Cellular and Gene Therapy Products
725 (2013), available from <https://www.fda.gov/media/87564/download>

726 12. U.S. FDA: Long Term Follow-Up After Administration of Human Gene Therapy Products.
727 Available from <https://www.fda.gov/media/113768/download>

728 13. Directive 2004/23/EC of the European Parliament and of the Council on setting standards of
729 quality and safety for the donation, procurement, testing, processing, preservation, storage
730 and distribution of human tissues and cells (2004). Off J L102:48-58

731 14. Directive 2009/120/EC amending Directive 2001/83/EC of the European Parliament and of
732 the Council on the Community code relating to medicinal products for human use as regards
733 advanced therapy medicinal products. OJ L 2009; 242:3-12. Available from
734 https://ec.europa.eu/health/sites/default/files/files/eudralex/vol-1/dir_2009_120/dir_2009_120_en.pdf

735

736 15. Bailey AM, Arcidiacono J, Benton KA, Taraporewala Z, Winitzky S. United States Food and
737 Drug Administration Regulation of Gene and Cell Therapies. *Adv Exp Med Biol.*
738 2015;871:1-29. doi: 10.1007/978-3-319-18618-4_1. PMID: 26374210.

739 16. Maeda, D., Yamaguchi, T., Ishizuka, T., Hirata, M., Takekita, K. and Sato, D. Regulatory
740 frameworks for Gene and Cell Therapies in Japan. *Regulatory Aspects of Gene Therapy and*
741 *Cell Therapy Products* (2015); 147-163

742 17. Ridgway, A., Agbanyo, F., Wang, J. and Rosu-Myles, M. Regulatory Oversight of Cell and
743 Gene Therapy Products in Canada. *Adv Exp Med Biol.* 2015; 871:49-71. doi: 10.1007/978-3-
744 319-18618-4_3.

745 18. NHS: Regenerative Medicine in the UK (2021), available from
746 <https://www.hra.nhs.uk/planning-and-improving-research/policies-standards-legislation/regenerative-medicine/>

747

748 19. Choi, M., Han, E., Lee, S., Kim, T. and Shin, W. Regulatory Oversight of Gene Therapy and
749 Cell Therapy Products in Korea. *Regulatory Aspects of Gene Therapy and Cell Therapy*
750 *Products* (2015); 163-179.

751 20. Health Sciences Authority, Singapore: Regulatory overview of cell, tissue or gene therapy
752 products, available from <https://www.hsa.gov.sg/ctgtp/regulatory-overview>

753 21. Lin YC, Wang PY, Tsai SC, Lin CL, Tai HY, Lo CF, Wu SI, Chiang YM, Liu LL.
754 Regulation of Cell and Gene Therapy Medicinal Products in Taiwan. *Adv Exp Med Biol.*
755 2015; 871:181-94. doi: 10.1007/978-3-319-18618-4_10. PMID: 26374219.

756 22. Schneider CK, Salmikangas P, Jilma B, Flamion B, et al. Challenges with advanced therapy
757 medicinal products and how to meet them. *Nat Rev Drug Discov.* 2010;9(3):195-201. doi:
758 10.1038/nrd3052.

759 23. Srivastava A, Mason C, Wagena E, Cuende N, Weiss DJ, Horwitz EM, Dominici M. Part 1:
760 Defining unproven cellular therapies. *Cytotherapy*. 2016;18(1):117-9. doi:
761 10.1016/j.jcyt.2015.11.004. PMID: 26719202.

762 24. 2018 International Conference of Drug Regulatory Authorities (ICDRA) meeting report,
763 WHO Drug Information Vol. 31, No. 4, Page 517, 2018; available at
764 https://www.who.int/medicines/areas/quality_safety/regulation_legislation/icdra/WHO_DI_3_2-4_18ICDRA.pdf

766 25. WHO Expert Committee on Biological Standardization: sixty-seventh report. Geneva: World
767 Health Organization, Page 36 - 38, 2016 (WHO Technical Report Series, No. 1004;
768 <https://www.who.int/publications/i/item/9789241210133>)

769 26. Hayakawa T, Aoi T, Bravery C, Hoogendoorn K, Knezevic I, Koga J et al. (2015). Report of
770 the international conference on regulatory endeavors towards the sound development of
771 human cell therapy products. *Biologics*; 43 (5) 283-297. doi:
772 10.1016/j.biologics.2015.07.009. Epub 2015 Aug 24.

773 27. Petricciani J, Hayakawa T, Stacey G, Trouvin JH, Knezevic I. (2017) Scientific
774 considerations for the regulatory evaluation of cell therapy products. *Biologics*. 2017 Nov;
775 50:20-26.

776 28. Abbot S, Agbanya F, Ahlfors JE, Baghbaderani BA, Bartido S, Bharti K et al. (2018) Report
777 of the international conference on manufacturing and testing of pluripotent stem cells.
778 *Biologics*. 2018 Nov; 56:67-83. doi: 10.1016/j.biologics.2018.08.004. Epub 2018 Aug 24.

779 29. Li, H., Yang, Y., Hong, W., Huang, M., Wu, M. and Zhao, X. Applications of genome
780 editing technology in the targeted therapy of human diseases: mechanisms, advances and
781 prospects. *Signal Transduct Target Ther*. 2020 Jan 3;5(1):1. doi: 10.1038/s41392-019-0089-
782 y.

783 30. International Pharmaceutical Regulators Programme (IPRP): International Regulatory
784 Frameworks for Cell and Gene Therapies, 11th August, 2021; available from
785 https://admin.iprp.global/sites/default/files/2021-09/IPRP_CTWG-GTWG_Frameworks_2021_0811_0.pdf

787 31. Bravery CA, Carmen J, Fong T, Oprea W, Hoogendoorn KH, Woda J, Burger SR, Rowley
788 JA, Bonyhadi ML, Van't Hof W. Potency assay development for cellular therapy products:
789 an ISCT review of the requirements and experiences in the industry. *Cytotherapy*. 2013
790 Jan;15(1):9-19. doi: 10.1016/j.jcyt.2012.10.008. PMID: 23260082.

791 32. Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong L,
792 Djonov V, Lako M, Stojkovic M. Ethical and Safety Issues of Stem Cell-Based Therapy. *Int
793 J Med Sci*. 2018; 15(1):36-45. doi: 10.7150/ijms.21666. eCollection 2018.

794 33. Anguela XM, High KA. Entering the Modern Era of Gene Therapy. *Annu Rev Med*. 2019;
795 70:273-288. doi: 10.1146/annurev-med-012017-043332

796 34. Reflection paper on management of clinical risks deriving from insertional mutagenesis
797 (EMA/CAT/190186/2012), available from
798 https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-management-clinical-risks-deriving-insertional-mutagenesis_en.pdf

800 35. WHO / African Vaccine Regulatory Forum (AVAREF), available at African Vaccine
801 Regulatory Forum (AVAREF) | WHO | Regional Office for Africa

802 36. ASEAN Joint Assessment Procedure for Pharmaceutical Products, available at ASEAN Joint
803 Assessment Procedure for Pharmaceutical Products (hsa.gov.sg)

804 37. Australia-Canada-Singapore-Switzerland-United Kingdom (Access) Consortium, available at
805 <https://www.tga.gov.au/australia-canada-singapore-switzerland-united-kingdom-access-consortium>

807 38. Vigibase, WHO global safety database; available from <https://who-umc.org/vigibase/>

808 39. Asia-Pacific Economic Co-operation (APEC), available at Asia-Pacific Economic
809 Cooperation (apec.org)

810

811 Appendix

812

813 Useful Information for Cell and Gene Therapy Products Regulation

814

815 Currently, international initiatives are actively working on information sharing and international
816 convergence for Cell and Gene Therapy Product regulation. Examples of such information for
817 manufacturers and regulators of CGTPs include, but are not limited to:

818

- 819 • IPRP, International Regulatory Frameworks for Cell and Gene Therapies (2021):
820 https://admin.iprp.global/sites/default/files/2021-09/IPRP_CTWG-GTWG_Frameworks_2021_0811_0.pdf
- 823 • IPRP Cell Therapy and Gene Therapy Working Groups share regulatory frameworks and
824 guidelines on ATMPs among member jurisdictions to assist manufacturers in accessing
825 global regulatory requirements. Full information on regulations and guidelines can be
826 accessed by the weblink for specific jurisdictions.
- 828 • PIC/S, PIC/S GMP Guide Annex 2A (Manufacture of Advanced Therapy Medicinal Products
829 for Human Use): <https://picscheme.org/docview/2231>
- 831 • PIC/S provides specific GMP requirements to ATMP as an annex 2A in the GMP guideline.
832 The annex is divided into two parts. Part A covers specific considerations in ATMP
833 manufacturing, from process of control over seed lots and cell banks to finishing activities
834 and testing. Part B encompasses considerations on particular product types, such as gene
835 therapy products.

836

837 • ICH, Nonclinical biodistribution considerations for gene therapy products:
838 <https://www.ich.org/page/public-consultations>

839

840 ICH provides guidance on nonclinical biodistribution (BD) studies in the development of
841 gene therapy products. This document covers the design of nonclinical BD studies and
842 considerations for interpretation and application of the BD data to support the design of
843 clinical trials.

844

845 • WHO, INN Nomenclature Scheme for Cell Therapy Products (2015):
846 <https://www.who.int/teams/health-product-and-policy-standards/inn/inn-bio/inn-bio-ct&publication=inn-13-323-4>; Mandatory information for INN selection and publication for
847 cell-based therapies including cell-based gene therapy substances (2020),
848 <https://www.who.int/teams/health-product-and-policy-standards/inn/inn-bio/inn-bio-ct&publication=inn-20-478>

850

851 During the 61st INN Consultation in 2015, a USAN-INN-harmonized nomenclature scheme
852 for cell therapy products was formally finalized and approved by the members of the INN
853 Expert Group designated to deal with the selection of international nonproprietary names.
854 Mandatory information for INN selection and publication for cell-based therapies including
855 cell-based gene therapy substances is available to the applicant for new INN request
856 submissions.

857

858 • WHO, Human genome editing: recommendations (2021):
859 <https://www.who.int/publications/i/item/9789240030381>; Human genome editing: a
860 framework for governance (2021), <https://www.who.int/publications/i/item/9789240030060>;
861 Human genome editing: position paper (2021),
862 <https://www.who.int/publications/i/item/9789240030404>

863

864 WHO provides recommendations on the governance and oversight of human genome editing
865 in nine areas, including human genome editing registries. WHO also provides a new
866 governance framework that identifies specific tools, institutions and scenarios to illustrate
867 practical challenges in implementing, regulating and overseeing research into the human
868 genome.

869

870 • WHO, Principles on the donation and management of blood, blood components and other
871 medical products of human origin (2017):
872 https://apps.who.int/iris/bitstream/handle/10665/274793/A70_19-en.pdf?sequence=1&isAllowed=y

873

874 WHO recommends ten principles for promoting ethical practices in the donation and
875 management of medical products of human origin, including voluntary consent of the donor,
876 safety, quality and efficacy of donation and provides key considerations for implementation.

877

880 • NIBSC, WHO 1st Reference Reagent for Lentiviral Vector Integration Site Analysis
881 <https://www.nibsc.org/documents/ifu/18-144.pdf>; 1st WHO International Reference Reagent
882 CD4 T-cells (human), <https://www.nibsc.org/documents/ifu/15-270.pdf>

883
884 NIBSC distributes WHO international measurement standards for assuring the quality of
885 biological medicines. Two WHO international measurement standards are available for cell
886 and gene therapy products. WHO 1st Reference Reagent for Lentiviral Vector Integration
887 Site Analysis is suitable as a qualitative Reference Reagent for lentiviral vector integration
888 site analysis, with a confident detection of the ten defined lentiviral vector integration sites.
889 1st WHO International Reference Reagent CD4 T-cells (human) are intended for use as a
890 cellular control for CD4 T cell enumeration by flow cytometry.
891
892

893 **Table 1. Examples of HCTs and ATMPs demonstrating the broad range of product**
 894 **complexity and primary potential risks of concern.**

Product class	Product type	Processing	Indication	Potential clinical risks
<i>Lower risk category</i>				
HCT	Autologous bone marrow cells	Collection of the bone marrow	Hematopoietic reconstitution	Infection
HCT	Allogeneic amniotic membrane	Collection and freeze drying, sizing	Treatment of ocular wounds	Infection, immunogenicity
HCT	Allogeneic virus-specific T cells, non-engineered	Collection, selection, washing and freezing of selected T cells (no culture and/or expansion)	Treatment of severe infections	Infection, immunogenicity
<i>Higher risk category</i>				
ATMP/CTP*	Autologous PBMCs	Collection, isolation and expansion of the cells, washing and formulation	Treatment of cardiac infarction	Infection, altered reactogenicity
ATMP/TEP	Autologous cultured chondrocytes	Collection, expansion, formulation	Cartilage repair	Poor, non-hyaline cartilage
ATMP/GTP <i>in vivo</i>	Adeno-associated virus + SMN1 gene	Most viral genes replaced by the SMN1 cassette, virus expansion, purification, formulation	Treatment of spinal muscular atrophy	Viral infection, immunogenicity
ATMP/CTP	Allogeneic pluripotent stem cells (iPSC / hESC)	Collection, purification, expansion, differentiation, formulation	Treatment of retinitis pigmentosa	Immunogenicity, tumorigenicity
ATMP/GTP <i>ex vivo</i>	Lentivirus + globin gene in autologous CD34+ cells	Lentivirus vector production using plasmids, purification and transduction into patient CD34+ cells, cell expansion and formulation	Treatment of beta-thalassemia	Integrational mutagenesis, oncogenesis, viral infection
ATMP/GTP <i>ex vivo</i>	Allogeneic CD19 CAR T cells	Construction of the CAR into lentivirus vector, removal of HLA genes from the T cells with gene editing, expansion, formulation	Hematopoietic malignancies, off-the-shelf	Genotoxicity, immunotoxicity, off-target editing, integrational mutagenesis, neurotoxicity

*Abbreviations: CAR = chimeric antigen receptor; CTP = cell therapy product; GTP = gene therapy product; hESC = human embryonic stem cells; HLA = human leukocyte antigen; iPSC = induced pluripotent stem cells; PBMCs = peripheral blood mononuclear cells

896

897 **Figure 1:** A general schema proposed for the regulatory path based on risk category and
 898 classification of the HCTs and ATMPs. ATMPs can be subcategorized according to their degree
 899 of processing and their mode of application, factors that directly impact risks associated with
 900 their use.