Annex 2

Nonclinical and clinical evaluation of monoclonal antibodies and related products intended for the prevention of respiratory syncytial virus disease

NOTE

This draft document has been prepared for the purpose of inviting comments and suggestions on the proposals contained therein, which will then be considered by the Expert Committee on Biological Standardization (ECBS). The distribution of this draft document is intended to provide information on a proposed addendum to the previously published WHO Guidelines on the nonclinical and clinical evaluation of monoclonal antibodies and related products intended for the prevention or treatment of infectious diseases to a broad audience and to improve transparency of the consultation process.

The text in its present form does not necessarily represent an agreed formulation of the ECBS. Written comments proposing modifications to this text MUST be received in English by 6 September 2024 in the Comment Form available separately and should be addressed to the Department of Health Products Policy and Standards, World Health Organization, 1211 Geneva 27, Switzerland. Comments may also be submitted electronically to the Responsible Officer: Dr Eunkyung Kim at: eunkim@who.int

The outcome of the deliberations of the ECBS will be published in the WHO Technical Report Series. The final agreed formulation of the document will be edited to be in conformity with the second edition of the WHO style guide (KMS/WHP/13.1).
© World Health Organization 2024

All rights reserved.

This is a draft intended for review by the Expert Committee on Biological Standardization and all interested parties for the purpose of consultation on the draft text. The content of this document is not final, and the text may be subject to revisions before publication. The document may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means without the permission of the World Health Organization.

The designations employed and the presentation of the material in this draft document do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft document. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

This draft document does not necessarily represent the decisions or the stated policy of the World Health Organization. The named authors [or editors as appropriate] alone are responsible for the views expressed herein.
Annex 2

Nonclinical and clinical evaluation of monoclonal antibodies and related products intended for the prevention of respiratory syncytial virus disease

1. Introduction 4
2. Purpose and scope 4
3. Terminology 4
4. General considerations 4
5. International reference materials 6
6. Nonclinical evaluation 7
 6.1 In vitro pharmacodynamics studies 7
 6.2 In vivo pharmacodynamics studies 8
 6.3 Assessment of antibody-dependent enhancement of disease 11
7. Clinical evaluation 11
 7.1 Inclusion and exclusion criteria 13
 7.2 Phase I studies 13
 7.3 Clinical pharmacology 14
 7.4 Phase II and III studies 14

Authors and acknowledgements 16

References 17
Guidelines and their addenda published by the World Health Organization (WHO) are intended to be scientific and advisory in nature. Each of the following sections constitutes guidance for national regulatory authorities (NRAs) and for manufacturers of biological products. If an NRA so desires, the parent WHO Guidelines and this addendum may be adopted as definitive national requirements, or modifications may be justified and made by the NRA. It is recommended that modifications to the Guidelines and/or this addendum are made only on condition that such modifications ensure that the product is at least as safe and efficacious as that prepared in accordance with the guidance set out.
Abbreviations

3 ADA anti-drug antibody
4 ADE antibody-dependent enhancement (of disease)
5 AE adverse event
6 AESI adverse event of special interest
7 CHD congenital heart disease
8 CLD chronic lung disease
9 DDI drug-drug interaction
10 Fc fragment crystallizable (region)
11 FcγR Fc gamma receptor
12 FI-RSV formalin-inactivated RSV
13 GMT geometric mean titre
14 IV intravenous
15 LRTI lower respiratory tract infection
16 mAb monoclonal antibody
17 NAAT nucleic acid amplification testing
18 NRA national regulatory authority
19 PD pharmacodynamics
20 PK pharmacokinetics
21 RBD receptor binding domain
22 RSV respiratory syncytial virus
23 RSV-IVIG intravenous RSV immunoglobulin
24 RT-PCR reverse transcription-polymerase chain reaction
25 SAE serious adverse event
26 URTI upper respiratory tract infection
1. Introduction

Evaluating the safety and efficacy of monoclonal antibodies (mAbs) and related products intended for the prevention or treatment of infectious diseases requires different considerations than mAb products that target endogenous proteins, such as those intended for the treatment of noncommunicable diseases. To help address such differences, the WHO Guidelines on the nonclinical and clinical evaluation of monoclonal antibodies and related products intended for the prevention or treatment of infectious diseases (1) was adopted in 2023 on the recommendation of the WHO Expert Committee on Biological Standardization. These Guidelines outline the general principles applicable to the evaluation of mAbs for use against infectious diseases. Although the document provides guidance on evaluating the safety and efficacy of mAb products regardless of the targeted pathogen, it was recognized that pathogen-specific considerations would potentially affect the interpretation and application of the guidance provided.

2. Purpose and scope

The current addendum provides supplementary considerations when evaluating the safety and efficacy of parenterally-administered mAb products directed specifically against respiratory syncytial virus (RSV) antigens and intended primarily for pre-exposure prophylaxis in infants and young children, but may also be applicable to the general immunocompromised population. It should be noted that mAbs and related products that target endogenous human antigens are not within the scope of this addendum as these require different considerations for evaluating their safety and efficacy.

Separate and detailed guidance on the production and quality control of mAbs is provided in the WHO Guidelines for the production and quality control of monoclonal antibodies and related products intended for medicinal use (2).

3. Terminology

The terms used in this addendum may have different meanings in other contexts. It should be noted that these and other terms relevant to this addendum are defined in full in the WHO Guidelines on the nonclinical and clinical evaluation of monoclonal antibodies and related products intended for the prevention or treatment of infectious diseases (1).

4. General considerations

RSV is an orthopneumovirus of the Pneumoviridae family and has two major subtypes, A and B. It consists of a single-stranded, non-segmented negative-sense RNA genome surrounded by a capsid consisting of a lipo-protein envelope derived from the host cell plasma membrane (3, 4, 5). The envelope contains three viral transmembrane surface glycoproteins, a putative attachment glycoprotein G, a fusion glycoprotein F and a small hydrophobic glycoprotein SH. Proteins F and G are considered essential for pathogenesis and induce neutralizing antibodies in the host. The SH protein is a pentameric ion channel analogous to the M2 protein in influenza
virus. Although not a major target for neutralising antibodies, anti-SH specific antibodies have been shown to protect through antibody-Fc mediated mechanisms (6). There is also a non-glycosylated matrix protein M present on the inner face of the envelope. Antigenic diversity between and within RSV subtypes mainly reflects variations in glycoprotein G with little homology between glycoprotein G of the A and B strains of RSV (7-9).

RSV infection is a major cause of respiratory disease globally, often causing seasonal epidemics in temperate regions, particularly during winter months. The emergence of RSV outbreaks is less predictable in warmer, tropical regions. RSV causes both upper and lower respiratory tract infections with significant morbidity and mortality in infants, especially those infected in the first six months of life and those born prematurely or with heart or lung diseases (5, 10). Although these infants are at higher risk of morbidity/mortality with an RSV infection, the vast majority of infants with RSV-associated morbidity do not have any risk factors. It should be noted that there is no conclusive link between severe lower respiratory tract RSV infection in infants and the development of either asthma or wheezing (12). RSV infection also leads to significant disease burden in the elderly with comorbidities such as congestive heart failure or chronic obstructive pulmonary disease, or in the immunocompromised, where infection can lead to severe, sometimes life threatening, lower respiratory tract disease (5-10). The high burden of disease caused by RSV leads to substantial hospitalization costs and economic burden (10, 11).

RSV is typically transmitted by direct contact, inhaled droplets, or through the eyes or nose. The virus then spreads through the respiratory tract from the nasopharynx to the distal alveoli (13). The hallmark of RSV disease is the formation of syncytia, large multinuclear cells created by many cells fusing together. By two years of age almost all children have had at least one RSV infection. As it does not elicit long lasting sterilizing immunity, repeated upper respiratory tract infections are common (13). Therefore, RSV is a nosocomial threat to young infants as well as to immunocompromised and vulnerable individuals (5, 10), and high mortality rates have been observed in those infected with RSV following bone marrow or lung transplantation (14, 15). Although the ability of RSV to reinfect children and adults seems not to be due to the emergence of different strains or to virus evolution, the mechanism by which it evades long-term immunity is unclear (16-18). This suggests that mAbs can be re-administered in subsequent seasons without necessarily impacting efficacy.

Although immune correlates of protection for RSV have not yet been established, evidence suggests that high concentrations of serum anti-RSV neutralizing antibodies are associated with a substantial decrease in the risk of severe lower respiratory tract disease following infection. Clinical trials involving the prophylactic administration of polyclonal immune globulin (RSV-IVIG) or mAbs against RSV have demonstrated a reduced risk of disease and led to the licensure of palivizumab (19) and the extended half-life mAb, nirsevimab (19-23). Although mAbs have shown a significant positive prophylactic effect on acute lower respiratory tract RSV infection, no beneficial therapeutic effect has so far been demonstrated once clinical symptoms of RSV infection are evident (24-25).

Maternal immunization with RSV preF vaccine is another means of providing protection against severe RSV disease in young infants from birth through to 6 months of age. One maternal preF RSV vaccine has been authorized in a number of countries (26, 27). However, safety signals related to preterm births associated with the use of a similar candidate
maternal RSV vaccine, especially in LMICs, has led to the cessation of clinical trials (28) and a call for a review of the safety signals of RSV preF vaccines (29-31). Even with the development of vaccines to RSV, there remains a need for mAbs for infants born to unvaccinated mothers, infants born preterm who do not benefit from maternal antibodies and older infants once maternal antibodies have waned. Countries may choose to use vaccines or mAbs, or both products, based on local context. Likewise, although immunization has demonstrated effectiveness against RSV disease in the elderly (32, 33) there remains a need to protect various immunocompromised populations, including those living with HIV, for which mAbs may be the method of choice.

While the issue of variants of RSV has not to date impacted the development or effectiveness of mAbs and vaccines as compared with COVID-19 (34), there has been a concern about possible vaccine enhancement of RSV disease. Formalin-inactivated RSV vaccines developed in the 1960s were not protective, but rather primed the recipient to a severe form of the disease upon subsequent infection with RSV (35-38). This phenomenon also occurred with formalin-inactivated vaccines to measles. Such immune enhancement has been attributed to the induction of low avidity, poorly neutralizing antibodies, to overactive allergic inflammatory responses affecting lung function and to a low CD8 T-cell response as well as to a Th2 dominant CD4+ T cell response (24, 36-39). High potency anti-F protein mAbs have not been associated with the mechanisms attributed to the formalin inactivated RSV vaccines of the 1960s, nor have declining titres of mAbs been associated with disease enhancement. Although safe and effective mAbs against RSV have been produced, attention to the assessment of possible disease enhancement triggered by different products and platforms should be considered during product development.

In 2021, WHO published the Preferred Product Characteristics of mAbs for passive immunization against respiratory syncytial virus disease (40). The document presents considerations for mAb developers and policy makers on preferred, but not required, mAb product characteristics. A WHO SAGE Working Group has also recently been formed to provide further advice on the development and introduction of mAbs to RSV.

5. International reference materials

WHO international reference standards are the primary reference materials used worldwide to support the development of serological assays and to increase the comparability of results obtained by different laboratories. Currently there are no International Reference Materials available specifically for the development of monoclonal antibodies against RSV. However, there is one related WHO international reference standard:

- First WHO International Standard for antiserum to RSV (41).

Although this antiserum is suitable for the standardization of virus neutralization methods to measure antibody levels against RSV A and B in human serum (42), two collaborative studies (42, 43) have demonstrated that the mAb Palivizumab behaved differently from human serum samples and the use of this standard did not harmonize data from neutralization assays of this mAb.
Further studies are needed to determine whether this International Standard, a polyclonal serum standard, is effective in harmonizing data from neutralization assays of other RSV mAbs.

6. Nonclinical evaluation

6.1 In vitro pharmacodynamics studies

The pharmacodynamics (PD) of the mAb should be characterized using in vitro assays as follows:

6.1.1 Target antigen or epitope

The currently available prophylactic mAbs target the RSV fusion (F) glycoprotein which is well conserved between RSV subgroups A and B. As the RSV attachment (G) glycoprotein is highly variable between RSV A and B this makes it a less promising target as compared to the F glycoprotein (44). The targeted epitopes of the mAbs should be identified, and the binding ability against recombinant F proteins from RSV A and B should be demonstrated for the prefusion conformation, and relative binding ability for pre- vs post-fusion epitopes should be assessed. This aims to prevent the fusion of the F protein with the targeted cell membrane and subsequent viral infection.

6.1.2 Virus neutralization assays

The primary antiviral mechanism of mAbs is through virus neutralization following its administration. The in vitro virus neutralization activity of mAbs should be assessed against laboratory strains and clinical isolates of RSV A and B. The antiviral activity can be demonstrated by microneutralization assays in a receptive mammalian cell line (e.g. HEp-2, Vero or A549 cells) incubated with RSV virus (45).

6.1.3 Effector function assays

The secondary antiviral mechanism of mAbs is the effector functions driven by Fc gamma receptor (FcyR) interactions. The effector properties of the mAb, such as antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC), should be assessed. If the Fc region of the mAb has been engineered, the modified pharmacological effects, such as extending mAb half-life or attenuation of Fc binding activity to Fc receptors, should be assessed and reported.

6.1.4 Virus resistance assessment

Neutralizing mAbs currently available or in development target the F glycoprotein which is well conserved, and has relative genetic and antigenic stability between RSV A and B. However, there is a potential risk in the emergence of antibody-resistant escape mutants. This may arise from the emergence of resistance mutations in circulating RSV strains (46). Therefore, the neutralization activity of the mAb binding epitope against the RSV strains should be evaluated using available RSV genetic database analysis and in vitro virus neutralization assays with
emerging strains from clinical surveillance, experimentally derived viral escape mutants and/or modelled predicted escape mutants (47). In the event where resistance is observed, genotyping, phenotyping and cross-resistance analyses of the potential escape mutants should be conducted.

6.2 In vivo pharmacodynamics studies

The cotton rat is the most commonly used and accepted animal model of human RSV infection due to its greater permissiveness to infection as compared to other animals (e.g. mice or non-human primates). For this reason, the cotton rat model is usually used in the development of mAbs for the prevention of RSV infection in infants.

Despite the acceptance and utility of cotton rat model, the use of other animal models should also be given consideration, especially when the RSV infection is reflective of the human infection and of the anticipated mechanism of action of the mAb.

Several animal models have been used for the investigation of treatment against human RSV infection. Each of the following models reflects some aspects of the clinical and pathological features of RSV infection in humans (48, 49).

- Cotton rats have been established as an animal model for human RSV disease and used widely in studies of antibody prophylaxis, vaccine, FI-RSV enhanced respiratory disease and maternally induced immunity. Cotton rats are highly permissive to human RSV infection and allow active viral replication in nasal and lung tissue to a greater extent than in other animal models. There is an absence of clinical symptoms but pathological findings such as bronchitis, alveolitis and pneumonitis were observed.

- Mice have shown variability in their susceptibility to human RSV infection. BALB/c mice are the most widely used strain for human RSV infection as they are semi-permissive to nasal and lungs replication. However, high doses of virus (>10^6 pfu) are needed to elicit clinical symptoms such as weight loss, reduced activity and piloerection, and pathological findings such as bronchiolitis and infiltration of immune cells in the lungs. The age of the mice should also be considered as aging leads to altered kinetics, greater susceptibility to RSV infection and greater disease severity (50, 51).

- Ferrets, due to their anatomical and respiratory physiological similarities with humans are a common model for studying human respiratory virus infections. Human RSV virus replicates in the nasal tissue of ferrets following intranasal inoculation, but virus replication in lung tissues is only observed in infant ferrets. However, adults ferrets are highly susceptible to human RSV infection following intratracheal inoculation. Virus replication in the upper and lower respiratory tract is observed in this model but the animals do not develop clinical symptoms.

- Lambs are susceptible to high doses of human RSV virus (>10^8 pfu) that leads to upper and lower respiratory tract diseases, with viral replication detected in the lungs. Following intratracheal inoculation, lambs developed mild clinical symptoms including slight fever, wheezing and cough. Pathological findings were similar to observations in human infants after RSV infection, including bronchitis, bronchiolitis, pneumonia, peribronchial lymphocyte infiltration and syncytial cells. This makes the preterm and neonatal lamb a useful model for severe RSV disease in preterm and neonatal infants.
• Non-human primates (NHPs) such as chimpanzees, macaques and African green
 monkeys have been used as animal models for human RSV infection due to the
 anatomic and physiological similarities to humans, and their use is mainly for the
 investigation of vaccine efficacy and safety.

 o Chimpanzees are fully permissive to human RSV infection; however, they are not
 expected to be used in the future development of products intended to prevent RSV
 disease. Naturally infected chimpanzees display upper respiratory tract disease
 including clinical symptoms such as coughing, sneezing and nasal discharged, and
 lower respiratory tract disease with pathological finding that includes pneumonia,
 high immune cells infiltration, oedema, and detection of viral antigen in the lungs.
 While experimentally inoculated chimpanzees also display upper respiratory tract
 disease with virus replication observed in the nasopharyngeal and tracheal passages,
 no lower respiratory tract disease is observed. Therefore, RSV disease in humans is
 not fully replicated in chimpanzees in experimental settings.

 o Macaque species (rhesus, cynomolgus and bonnet) are only semi-permissive to
 infection with human RSV, even following the administration of high doses of virus.
 Mild interstitial pneumonia has been observed in juvenile rhesus macaques
 inoculated with high doses of virus, but these animals display no signs of clinical
 symptoms.

 o African green monkeys are also semi-permissive to human RSV infection. Similar
 to macaques, African green monkeys do not show signs of clinical symptoms after
 infection and may only develop minor pathology changes in the lungs.

Based on the differences in clinical and pathological aspects of RSV infection, the
selection of animal models for characterizing the potential clinical use of the mAb should be
thoroughly justified. For scientific and ethical reasons, the principles of 3Rs (replacement,
refinement, reduction) in animal use should be applied. Furthermore, the design of the proof-
of-concept study should also reflect the intended clinical use(s) of the mAb.

The characteristics of RSV infection and disease outcome in the above animal models
are summarized in Table 1. It should be noted that the summary table is provided for
information purposes only and the scientific literature on current animal models of RSV
infection should be taken into consideration when designing proof-of-concept studies.

Although several animal models have been used for the development of RSV
prophylactics, there are no animal models optimized to mimic human RSV infection,
transmission or disease. The selection of appropriate animal models for proof-of-concept
studies should take into consideration the disease outcome of each animal model with regard
to the intended study end-points.

The design of proof-of-concept studies should also ensure the use of a well-
characterized virus challenge strain and acceptable route of inoculation. The minimum
anticipated biological effect level (MABEL) or biological effective dose (BED) should be
determined to aid first-in-human study design and dose selection.
Table 1
RSV infection characteristics and disease outcomes in potential animal models for RSV mAb development (48, 49)

<table>
<thead>
<tr>
<th>Relevant animal models</th>
<th>Infection characteristics and disease outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodent</td>
<td></td>
</tr>
</tbody>
</table>
| Cotton Rat | ▪ Established animal model for human RSV infection
 ▪ Highly permissive to human RSV infection
 ▪ High levels of viral replication in nasal passage and lungs.
 ▪ No overt signs of disease
 ▪ Lung histopathology changes observed (for example, bronchitis, alveolitis and pneumonitis) |
| BALB/c Mouse | ▪ Widely used for human RSV infection
 ▪ Semi-permissive to human RSV infection
 ▪ Viral replication observed in nasal passage and lungs
 ▪ Presence of age-dependent RSV responsiveness
 ▪ Disease symptoms observed at high virus inoculation are weight loss and reduced activity
 ▪ Lung histopathology changes observed (for example, bronchiolitis and infiltration of immune cells in the lungs) |
| Other | |
| Ferret | ▪ Permissive to human RSV infection
 ▪ Adult ferrets have viral replication in the upper and lower respiratory tract following intratracheal inoculation only
 ▪ Infant ferrets have viral replication in the upper and lower respiratory tract following intranasal inoculation
 ▪ No overt signs of disease |
| Lamb | ▪ Preterm and neonatal lambs are useful models for severe RSV disease in infants.
 ▪ Semi-permissive to human RSV infection
 ▪ Viral replication observed in the upper and lower respiratory tract after inoculation with high doses of virus
 ▪ Symptoms include slight fever, wheezing and cough
 ▪ Lung histopathology changes observed (for example, bronchitis, bronchiolitis, pneumonia, peribronchial lymphocyte infiltration and syncytial cells) |
| Non-human primates | (Note that the use of non-human primates is mainly for vaccine efficacy and safety testing; they should only be considered as a last resort option when other models are inadequate. Their use in RSV mAb development should be extensively justified) |
| Macaque species (rhesus, cynomolgus and bonnet) | ▪ Semi-permissive to human RSV infection
 ▪ No overt signs of disease
 ▪ Lung histopathology (mild interstitial pneumonia) only observed in juvenile rhesus macaques |
| African green monkeys | ▪ Semi-permissive to human RSV infection
 ▪ No overt signs of disease
 ▪ Minor lung histopathology changes observed |
6.3 Assessment of antibody-dependent enhancement of disease

Enhancement of disease was first observed in formalin-inactivated RSV (FI-RSV) vaccination where an increased in hospitalization with severe disease, with two deaths, was observed in children who were immunized with FI-RSV vaccine. It has been suggested that non-neutralizing antibodies to F-protein may have been a contributing factor to enhancement of disease. However, no correlation has been found between disease severity in infants and virus neutralization titers shown to induce antibody-dependent enhancement (ADE) of disease in vitro (52). Complement activation observed in lungs of the two fatal infant cases suggested that antibody-F protein immune complexes may have been the cause of severe disease, but the relation between complement activation and ADE has yet to be determined. Moreover, ADE of disease has never been demonstrated in vivo (53, 54), nor demonstrated in authorized mAbs to RSV.

Furthermore, the experience of approved mAbs for the prevention of RSV disease in neonates and infants showed that there is no increase in RSV morbidity with decreases in mAb titers and no risk of severe disease from declining mAb titers (55). Although there is no known in vitro or in vivo model predictive of ADE, the potential should be considered during product development and discussed with the NRA.

7. Clinical evaluation

To date, mAbs to RSV have proven to be efficacious for pre-exposure prophylaxis in paediatric populations (56-60). However, they have failed to demonstrate clinical efficacy as a therapeutic following the onset of symptoms (24). Therefore, this guidance focuses on the clinical development of mAbs for pre-exposure indications, primarily in paediatric populations. As other populations, such as immunocompromised adults, may also benefit from pre-exposure prophylaxis, they could potentially also be the target subjects in clinical trials.

In regions where RSV mAbs are authorized for use in the general paediatric and paediatric at-risk populations, active controlled clinical trials should be used with the appropriate comparator. Placebo-controlled studies would be considered unethical in such circumstances as all study subjects should receive a minimum current standard of care for the prevention of the infection, regardless of the treatment arm. Placebo-controlled studies may be justified under certain circumstances, for example when the reference mAb is not easily available or authorized in the region (61). Non-inferiority studies using clinical end-points might not be feasible due to sample size requirements. However, should correlates of protection against RSV be identified, this would allow for a smaller phase III study using the biomarker end-points. Alternative study strategies, such as concentration-time profiles, complemented by limited clinical data, might also be considered; however, any alternative study design should be discussed with the regulatory authorities.

The primary objectives of early mAb clinical development programmes should be to establish its safety and PK, demonstrate its antiviral activity, explore its potential to induce anti-
drug antibodies, and to select the right dosing for phase III clinical trials (62, 63). Should anti-
drug antibodies be detected, their impact on safety and PK can be assessed prior to initiating
future clinical studies. The timing of mAb administration in relation to regional epidemiological
activity (RSV outbreaks) will be important as this will differ in temperate climates as compared
to regions experiencing RSV transmission throughout the year, with no clear peak activity (64).
For clinical studies conducted in regions with little or no prevalent seasonal variation in disease
activity, recruitment and dosing should be continuous, and cases collected for at least 6 months
or until sufficient cases have accumulated so as to allow the primary analysis. In regions with
an established RSV disease seasonal pattern, clinical trials should continue for the duration of
the season, with extended follow-up to provide information on long-term safety and efficacy.

Participants in phase II and III clinical studies should be representative of the product’s
intended population. Although it is expected that the target group will primarily be paediatric
patients, it may be useful to identify particular sub-groups which might benefit from the mAb
treatment. These sub-groups may include very and moderately preterm infants (65); infants
with chronic lung disease (CLD) of prematurity (66) or haemodynamically significant
congenital heart disease (CHD) (67), as well as healthy children born at term (68). The
distribution of these sub-populations should be considered and stratified at the time of
randomization or, alternatively, enrolled in different trials. Developers might wish to take
account of an age step-down approach (e.g., starting with healthy infants born at ≥35 weeks 0
days gestational age) then descending to seronegative premature infants with co-morbidities,
such as chronic lung disease. Special populations (e.g., those who are immunocompromised,
have Down syndrome, neuromuscular disease or cystic fibrosis) may also be appropriate for
study (69, 70), but only limited data might be obtained if the population is small. Development
programmes geared towards vulnerable adults (e.g., those who are immunocompromised)
should be discussed with regulatory authorities regarding appropriate study design and results
required for licensure. Regardless of the population studied, efficacy end-points should be
based on objective clinical and diagnostic criteria (e.g., lab considerations RT-PCR /NAAT
verified and with findings of LRTIs +/- severity criteria). Case definitions for appropriate
clinical end-points have been described elsewhere (71). Symptoms should be evaluated through
the RSV season and/or study period with methods of surveillance, standardized across study
sites.

There has been considerable interest in the potential of RSV prophylaxis to prevent
wheezing episodes and asthma, although the link between RSV and wheezing or asthma is
uncertain (12). Although demonstrating beneficial effects in these cases is not expected as a
requirement for licensure, developers may elect to explore this relationship in the post-
authorization setting as a potential long-term outcome and benefit. In such instances, the
sponsor should seek advice from regulatory authorities on the selection of the most appropriate
end-points.

To accelerate authorization of novel mAbs to the same antigen as a previously
authorized RSV mAb product, comparison of its affinity, avidity, and/or neutralization activity
might be considered. However, it is recommended that the regulatory authorities be consulted
regarding acceptable clinical study design and the use of non-inferiority margins prior to
investigating this strategy.
Special attention should also be given to the emergence of ADA, with PK monitoring as a surrogate for potential impact on efficacy of the monoclonal antibody.

7.1 Inclusion and exclusion criteria

This section refers to paediatric development programmes. If an indication in adults is sought, the intended population should be reflected in the inclusion criteria.

Inclusion criteria

- Infants reflective of the sub-groups identified within the study protocol
- Infants who are likely to be immune-naive to RSV infection at the time of screening (e.g. entering their first RSV season or prior to a regional outbreak)
- Infants who remain vulnerable to severe RSV disease through their second RSV season
- For a CLD/CHD cohort:
 - CLD: diagnosis of CLD of prematurity requiring medical intervention within 6 months prior to enrolment.
 - CHD: documented haemodynamically significant CHD, unoperated or partially corrected.

Exclusion criteria

- Significant infection or acute illness, including fever ≥ 38°C within 7 days prior to randomization
- Receipt of another RSV mAb prior to its washout period, including passive transfer of RSV specific IgG through maternal RSV vaccination
- Immunization with an RSV vaccine
- Receipt of any investigational product or enrolment in another interventional study
- Known hypersensitivity to the immunoglobulin (active substance) or listed excipients
- Severe adverse reaction following administration of a mAb
- Anticipated survival < 6 months following randomization

It should be noted that the regional availability or use of marketed mAbs to RSV may impact the exclusion criteria.

7.2 Phase I studies

Phase I and first-in-human studies are conducted to determine the initial safety and tolerability of the investigational medicinal product following completion of the essential nonclinical studies. Clinical experience has shown that most human and humanized mAbs are, in general, well tolerated.

Phase I clinical studies can be conducted in healthy adults or in infants, based on the mAb product development programme. In general, the principles of direct acting drug development in paediatric populations will be followed. The extrapolation of efficacy results from clinical studies in adults is not possible due to the pathophysiological differences of the disease between adults and children. This difference is particularly evident in infants and toddlers as their airway system is much narrower and more easily compromised by
inflammation due to RSV infection. As well, adults are not immune naive to RSV. Nevertheless, adult trials could be useful to establish safety and for a preliminary characterization of the pharmacokinetic properties of the product.

7.3 Clinical pharmacology

Proper bioanalytical and immunogenicity methods need to be developed and validated for determination of the mAb serum concentrations, neutralizing Abs and detection of ADAs.

The primary PD effect of the mAb is shown by an increase in serum anti-RSV neutralizing antibody levels, with the exposure-response model across dose levels to be described. Peak neutralising antibody activity and activity decay curve in trials in the target population will support proper dose selection; however, assays should be able to differentiate and/or account for the presence of any endogenous antibodies elicited from RSV exposure.

Formal hypothesis testing for efficacy in some higher-risk infant subgroups might not be necessary. Extrapolation of efficacy based on exposure is reasonable, as mAbs have an external target, with exposure-response expected to be comparable between paediatric populations. Appropriate population pharmacokinetic (popPK) models may be developed for extrapolation of efficacy by PK bridging. Various factors may need to be considered for modelling, such as the effect of baseline body weight, gestational age, organ maturation function. Other relevant factors to consider may include the influence of race, CHD or CLD and ADA on the PK.

Since mAbs are not expected to undergo renal elimination or to be metabolized by hepatic enzymes, exploring the effect of renal or hepatic impairment might not be warranted. Drug-drug interactions (DDIs) are also not expected due to the nature of the product; therefore, the conduct of DDI studies is not necessary.

7.4 Phase II and III studies

The primary objective of the phase II trials should be characterizing the safety profile and establishing the proof of concept in the intended target population. The efficacy of the prophylactic mAb studied in phase II/III trials should be to evaluate its ability to prevent the disease. Consultation with the NRA is recommended during trial design and end-point selection.

7.4.1 Efficacy

An emphasis should be placed on designing randomized controlled clinical trials that take account of the study target population, the selected clinical end-point(s) and case definitions, with methods of assessment to be applied consistently across the pivotal studies. Relevant examples of case definitions that could be used for primary, secondary and exploratory end-points are shown in Table 2.

In regions where current RSV prophylaxis is already recommended, the conduct of placebo-controlled studies would not be appropriate. Here active control studies would be needed with either demonstration of non-inferiority or extensive pharmacological characterization of the new product and the control product supported by limited efficacy data.
in this population. It should be noted, however, that non-inferiority studies using clinical end-points might not be feasible due to sample size requirements. In populations for which no recommended prophylaxis is currently available as per local standard of care, the conduct of placebo-controlled studies would be appropriate.

7.4.2 Safety

The continual evaluation of mAb product safety is an important component within all phases of clinical studies. Although mAbs targeting infectious agents generally have a very good safety profile, each product is unique and should be considered independently. Safety data should be obtained during the clinical trials to characterize and quantify the product safety profile, which can include the type, frequency and severity of adverse drug reactions. It is recommended that the size of the database required for licensing be discussed with the regulatory authority.

Evaluating the safety and tolerability of anti-RSV mAbs should include the recording of all adverse events (AEs), serious adverse events (SAEs) and adverse events of special interest (AESIs), such as immediate hypersensitivity, including anaphylaxis, and immune complex disease (Table 2). Local and systemic reactions to first and eventual subsequent doses should be fully captured. Subjects should be followed up for a sufficient period, as determined by the half-life of the RSV neutralizing antibody.

Long-term follow-up should provide special attention to cases suggestive of enhanced respiratory disease (ADE), with such cases to be reported in the safety data. Special attention should be given to the potential induction of ADAs, with immune complex disease and hypersensitivity reactions.

7.4.3. Post-authorization monitoring

The potential risk of treatment failure due to the development of RSV strains resistant to the mAb, along with the potential risk of ADE should continue to be assessed post-authorization. Data monitoring (including systematic and proactive review of the emerging data) should be conducted using all available data sources.

The requirements for a risk-management plan, Phase IV studies and/or use of real-world evidence and data should be discussed with the NRA.

Table 2

Example of clinical end-points

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Estimate description/end-point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Medically attended LRTI (inpatient and outpatient) due to RT-PCR-confirmed RSV, through at least 150 days after dosing (i.e., during a typical 5-month RSV season)</td>
</tr>
<tr>
<td>Estimate of safety & tolerability of the mAb</td>
<td>AEs, SAEs and AESIs during study period</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
</tr>
<tr>
<td>Estimate the efficacy of the mAb in preventing severe LRTI - RSV (hospitalization)</td>
<td>Hospitalizations due to RT-PCR-confirmed RSV through at least 150 days after dosing</td>
</tr>
<tr>
<td>Assess the PK of the mAb following administration of an appropriate dose via an appropriate route</td>
<td>Serum concentrations</td>
</tr>
<tr>
<td>Evaluate ADA response to the mAb in serum</td>
<td>ADA to the mAb in serum</td>
</tr>
<tr>
<td>Exploratory</td>
<td></td>
</tr>
<tr>
<td>Estimate the efficacy of the mAb in preventing very severe LRTI - RSV</td>
<td>Hospitalizations with supplementary oxygen or IV fluids due to RT-PCR-confirmed RSV through 150 days after dosing</td>
</tr>
<tr>
<td>Estimate the efficacy of the mAb in preventing severe LRTI</td>
<td>Hospitalizations due to any respiratory infection through at least 150 days after dosing</td>
</tr>
<tr>
<td>Estimate the efficacy of the mAb in preventing very severe LRTI</td>
<td>Hospitalizations with supplementary oxygen or IV fluids due to any respiratory infection through at least 150 days after dosing</td>
</tr>
<tr>
<td>Estimate the efficacy of the mAb in preventing all medically attended RSV</td>
<td>Medically attended URTI and LRTI (inpatient and outpatient) due to RT-PCR-confirmed RSV, through at least 150 days after dosing (i.e., during a typical 5-month RSV season)</td>
</tr>
</tbody>
</table>

Authors and acknowledgements

The first draft of this WHO addendum was prepared by Dr A. Chia (*lead author for the Nonclinical evaluation section*), Health Sciences Authority, Singapore; Dr E. Griffiths (*lead author for the General considerations section*), consultant, United Kingdom; Dr R. Isbrucker (*lead author for the Introduction, and Purpose and scope sections*), Health Canada, Canada; Dr E. Pelfrene (*lead author for the clinical evaluation section*) European Medicines Agency, Netherlands (Kingdom of the). The draft document was then reviewed and revised by a drafting group comprising Dr A. Chia, Dr E. Griffiths, Dr R. Isbrucker, Dr B. Klug, Paul-Ehrlich-
Institut, Germany; Dr E. Pelfrene; and by Dr E.K. Kim, Dr I. Knezevic and Dr E.G. Sparrow-Jones, World Health Organization, Switzerland.

The resulting draft document was posted on the WHO Biologicals website from 26 April to 31 May 2024 for a first round of public consultation. Comments were received from Dr JW. McBlane, Medicines and Healthcare products Regulatory Agency, United Kingdom; Dr M. Li, National Medical Products Administration, China; Dr A. Soebandrio, Faculty of Medicine University of Indonesia, Indonesia; Dr S. Silveira, ANVISA, Brazil; Mrs AF Ismail, Egyptian Drug Authority, Egypt; Health Canada, Canada; Dr Ian Feavers, United Kingdom; Dr W. Wang, Zhuhai Trinomab Pharmaceutical Co. Ltd., China; Dr P. Saidon, Pan American Health Organization, USA; Dr R.Y. Cordero, Philippines Food and Drug Administration, Philippines; Dr S. Laghnimi-Hahn, IFPMA, Switzerland; Dr A. Schmidt, Bill & Melinda Gates Medical Research Institute, USA; Dr S. Fakhrzadeh, Iran; Dr S. A. Madhi, University of the Witwatersrand, South Africa.

All comments received were collated and distributed to the drafting group members for their consideration, and revisions to the text made accordingly. A subsequent draft document (WHO/BS/2024.2475) was prepared for a second round of public consultation.

References

