COVID-19 Epidemiology
Past and current trends, drivers of transmission and severity, and epidemiological research gaps

Prof Ibrahim Abubakar, University College London

Global Research and Innovation Forum
24th-25th February 2022
Key epidemiological questions

• Global surveillance and detection of variants including epidemiological early signals of transmissibility and severity

• Predicting viral evolution (and consequences of combinations of mutations/deletions) and trends in infection/severe disease

• Assessing the levels of population immunity and waning (vaccine and infection derived) against infection and severe disease

• Understanding the distribution, determinants, prevention and treatment of Post COVID-19 condition (long covid)
COVID-19 global situation
Forces acting on pathogen transmission

Viral Evolution
Evolution of SARS-CoV-2 variants with higher transmissibility and greater immune evasion

Immunity
Susceptible populations due to lack of access to vaccines, vaccine hesitancy and/or waning immunity following infection or vaccination

Seasonality
Seasonal variation in mixing and indoor crowding affecting social mixing

Mitigation
Use of Public Health and Social Measures in the context of increased social mixing
Viral evolution drives transmissibility and immune evasion

Data source: GISAID
Proportions have not been adjusted for country sequencing capacity
Population immunity

- Population immunity is high in many regions due to combined effect of vaccination and infection, though unprotected populations remain.

- Strength and duration of protection is lower against infection than against severe disease.

Source: Bergeri et al., 2021.

Dotted line indicates approximate emergence of Omicron.
Forces acting on disease severity

Viral Evolution
Emergence and circulation of VOCs with increased or decreased virulence and immune escape

Immunity
Vaccination coverage particularly in vulnerable populations. Widespread previous infection

Age
Including distribution of immunisation (vaccine/prior infection)

Medical interventions
Treatment availability: steroids, antivirals

Comorbidity
NCD, Obesity and Immunosuppression

Human genetics
Human Genetic Susceptibility: Neanderthal haplotype increases susceptibility to severe disease
Variants and immunity affect COVID-19 severity

Variants can have **higher or lower intrinsic severity**

Omicron has resulted in proportionally lower severity as a result of lower intrinsic severity and more preserved immunity against severe disease than infection.
Research gaps and priorities

• Understanding the implications of viral evolution on key epidemiological parameters, vaccine induced and natural immunity on transmission and disease severity (strengthen surveillance and sequencing, VOC/VOI studies)

• Evaluating Post COVID-19 condition (long covid) in different populations and the value of current and future vaccines

• Identifying novel, cheaper treatment that will prevent progression to severe disease

• Assessing the most effective and efficient combinations of public health measures to prevent transmission of SARS-CoV-2, its variants and future respiratory pathogens
Thank you