Mosaic RBD nanoparticles protect against multiple sarbecovirus challenges in animal models

Pamela J. Bjorkman, Division of Biology and Biological Engineering, Caltech David Baltimore Professor of Biology & Biological Engineering; Merkin Institute Professor

Mosaic Strategy: Preferentially stimulate B-cells whose BCRs avidly bind to <u>conserved epitopes</u> <u>shared by variable antigens</u>. Spycatcher003-mi3 architecture displays diverse antigens randomly to promote avid binding to adjacent conserved epitopes.

Clustered orange BCRs bind with avidity to a strain-specific distracting epitope (△) on orange antigens. This B cell is stimulated to proliferate and make strain-specific Abs.

Orange BCRs cannot bind with avidity to strain-specific distracting epitope (△) on orange antigens. This B cell will not be stimulated to proliferate to make strain-specific Abs.

Purple BCRs can bind with avidity to desired epitope presented on multiple different antigens (\bigcirc), but not to distracting epitopes (\triangle \triangle) This B cell will be stimulated to proliferate and produce crossreactive Abs.

Class 4 anti-RBD are more conserved than other Ab-binding regions

Claudia Jette

We are trying to target the base of the RBD (class 3 and class 4 anti-RBD antibody epitopes) that is more conserved than the immunodominant class 1 and class 2 epitopes overlapping with the ACE2 binding site that are less conserved and also accumulate mutations in SARS-CoV-2 variants.

We chose RBDs from 8 sarbecovirus spike proteins for making nanoparticles, including RBDs from viruses with spillover potential

(from Letko et al., 2020, Nature Microbiology)

oat)
bat)
bat)
olin)
(bat)
m (bat)
bat)
oat)
at)
at)
at)
li

Amino acid sequence identity between these RBDs: 67-95%

Alex Cohen Cohen et al., 2021, *Science*

Homotypic

mosaic-4a

mosaic-4b

mosaic-8

Look for "matched" and "mismatched" binding and neutralization responses.

Mosaic immunizations in mice and NHPs elicit broad recognition of sarbecoviruses

Mean (n=10) neutralization ID₅₀ of mouse sera 28 days after boost 1

Vaccine Immunogen	SARS-2 D614G	SARS-1	WIV1	SHC014	SARS-2 Beta	SARS-2 Delta
Mosaic-8	5,400	1,800	2,600	15,000	2,400	1,130
Homotypic	5,600	410	370	340	3,300	1,680

Mean (n=8) neutralization ID₅₀ of NHP plasma 8 days after boost 1

` '		30				
Vaccine Immunogen	SARS-2 D614G	SARS-1	WIV1	SHC014	SARS-2 Beta	SARS-2 Delta
Mosaic-8	320	2,200	4,490	12,000	680	500

Neutralization ID₅₀ >10000 1000-10000 500-1000 100-500 <100

Mosaic-8 RBDnanoparticle
immunized NHPs raise
cross-reactive binding
and neutralizing
antibodies that react
with both matched and
mismatched
sarbecoviruses across
different clades

Alex Cohen

BIOQUAL

Mark Lewis

Hanne Andersen Ankur Sharma

Mosaic-8 nanoparticles protect against SARS-CoV-2 and SARS-CoV infections

Hanne Andersen Ankur Sharma Mark Lewis (BIOQUAL)

Mosaic-8 nanoparticles protect against SARS-CoV-2 and SARS-1 infections

Survival post challenge

Mosaic-8b and homotypic SARS-2 RBD-mi3 nanoparticles elicit Abs against different RBD epitopes

If you target the conserved ("purple") RBD regions, will conserved regions begin to mutate?

RBD regions conserved between sarbecoviruses and SARS-CoV-2 variants are involved in contacts within S trimer – they "should" remain conserved

Acknowledgements

https://twitter.com/bjorkmanlab; http://www.its.caltech.edu/~bjorker/

CoV structural studies

Christopher Barnes → Stanford Chengcheng Fan

Anthony West
Claudia Jette
Morgan Abernathy
Kim-Marie Dam
Andrey Malyutin
Beth Huey Tubman
Erica Lee
Pauline Hoffman

Rockefeller University

Michel Nussenzweig Davide Robbiani Vinci Wang Christian Gaebler

CoV vaccine design

Alex Cohen
Jennifer Keeffe
Pri Gnanapragasam
Erica Lee

Magnus Hoffmann Pauline Hoffman Susan Ou Leesa Kakutani

Oxford

Alain Townsend
Jack Tan

Mark Howarth
Hung-Jen Wu

Rocky Mountain National Labs

<u>Vincent Munster</u> Neeltje van Doremalan

BIOQUAL

Mark Lewis
Hanne Andersen
Ankur Sharma

City of Hope

John Williams

Miso Park

Fred Hutchinson

Jesse Bloom

Allie Greaney

Beckman Institute facilities at Caltech: Protein Expression Center, Cryo-EM Center, Molecular Observatory Funding: Wellcome Leap, Gates Foundation, Caltech Merkin Institute, NIH COVID-19 supplement, George Mason Fast Grant