Use of MinION sequencing for contact tracing of Ebola and Marburg virus diseases in outbreak situations

Sophie Duraffour, PhD
Bernhard Nocht Institute for Tropical Medicine
BNITM
Virology dpt
Group Leader
Hamburg, Germany

WHO Strategic Agenda for Filovirus Research and Monitoring (AFIRM) – 30 March 2022

The slides may include copyright content – do not share outside the group of this meeting
MinION sequencing

Overview

Devices

Analysis

MinION

MK1C
MinION sequencing
Molecular epidemiology

Amplicon-based
Targeted
Specific target known and “conserved”
Ex: Ebola virus, SARS-CoV-2

Metagenomic
Non-targeted
Specific target unknown no amplicon avail./target too diverse
Ex. Marburg virus, Lassa virus

Phylogeny
Complete virus genomes

Origin of the virus
Linkage with others? New?
Chains of transmission
The **European Mobile Laboratory: EMLab**

Diagnostic lab to deploy anywhere needed

University of Birmingham, UK
Nick Loman, Joshua Quick

EMLab
Joseph Ako Bore, Raymond Koundouno
EVD 2014-2016
Real-time sequencing

Mother’s breast milk to child

Sexual transmission

Ebola Virus Persistence in Breast Milk After No Reported Illness: A Likely Source of Virus Transmission From Mother to Child

Clinical Infectious Diseases

https://doi.org/10.1093/cid/ciw601

Resurgence of Ebola Virus Disease in Guinea Linked to a Survivor With Virus Persistence in Seminal Fluid for More Than 500 Days

Emerging Infectious Diseases
EVD Guinea 2021
Real-time amplicon-based sequencing

Arrival 5 March & Set-up 6 March 2021 – morning

https://artic.network/
• Resurgence of an EBOV related to the one from 2014-2016
 • 6.4-fold (95%/ HPD3.3-fold – 10.1-fold) vs Koropara 5.5-fold
• No new introduction from the animal world
• Long latency/persistence
• Epi investigations not conclusive
• Caution ag. Stigmatization

CERFIG-IPD-LFHVG

nature

Research of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks
Marburg virus disease Guinea 2021

New introduction
Link to Angola/Sierra Leone

data from the image is not legible due to the image quality.
Key Tool to support field epidemiology and outbreak response
Results shared in real-time with MoH → further reporting
Reassures about outbreak origin/adequate communication
Link with laboratory
 • Sample quality for the sequencing lab
Sequence quality
 • Nucleotide level (SNP) for chains of transmissions
 • Full length: approx. 20,000 bp
 • Public health versus chains of transmissions!
Sets the ground for future research grounds with discoveries about virus evolution, persistence, ... continuous improvements needed!
Conclusions and perspectives
Filovirus MinION sequencing

2015: amplicon-based
-1 sample per MinION
-max 2 samples per day
-Lab-prep 24hr
-Up to 20 tubes for 1 sample
-Sequencing few hr: 20,000 reads
-Remote analysis
-Full-length genome recovery
-Consensus: nucleotide level
-Remote phylogeny

2017: Metagenomic development
-Up to 5 samples per MinION
-10 samples per day
-Lab-prep 48hr
-1 tube per sample
-Sequencing 24-48 hr: 10 Million reads
-Pipeline development
-Analysis on site 72 hr
-Genome recovery variable
-Consensus: nucleotide level
-On site/remote phylogeny

2021: amplicon-based
-12-96 samples per MinION
-Lab-prep 24hr
-2 tubes per sample
-Sequencing 24-48 hr: 10 Million reads
-Pipeline development
-Analysis on site 24hr
-Full-length genome recovery: 85-98%
-Consensus: nucleotide level
-On site/remote phylogeny

Collaborative network
https://labs.epi2me.io/
Conclusions and perspectives

• Sequencing is not the new RT-PCR...

• Strong technical lab expertise: continuous protocol development
 • Amplicon-based and metagenomic (knowledge of pathogen, sequence, protocol available; EBOV needs improvements! MARV to be setup? Specific expertise – various types of samples)

• Bioinformatics/pipeline development/analysis/quality assurance/phylogeny (ARTIC/Epi2me/in-house)

• IT: Computers/large data/backup/offline access

• In-country capacity building!

• Logistics! Electricity...

• Our experience:
 • team of 6 people for protocol setup/optimization and troubleshooting, need of network/collaborative work/harmonized pipeline

• Framework for data sharing

• Ethics! Nagoya! Funding! Expertise! Network!
Acknowledgments – Guinea

LFHV
- LFHV-GKD
- Dr. N’Faly Magasssouba
- Raymond Koundouno
- Youssouf Sidibé
- Barré Soropogui
- Kékoura Ifono
- Joseph Ako Boré
- Lucien Millimouno
- All other lab staffs

BNITM
- Prof. Stephan Günther
- Dr. Liana Kafetzopoulou
- Dr. Annick Renevey
- Dr. Emily Nelson
- Dr. Giuditta Annibalis
- Dr. Nathalie Vielle
- Julia Hinzmann
- Mette Hinrichs
- Jonas Müller

KULeuven
- Prof. Philippe Lemey

PHE
- Steve Pullan

EMLab experts
- Public Health England, Microbiology Services Salisbury, UK
- Laboratoire P4 Inserm Jean Merieux / Institut Pasteur, Lyon, France
- Spiez Laboratory, Spiez, Switzerland
- University of Leuven, Belgium
- Tropical Institute Antwerp, Belgium
- KU Leuven, Belgium
- Friedrich Löffler Institute, Riems, Germany
- ARTIC Network
- Joshua Quick
- WHO GVA & AFRO
- WCO
BNITM – Head of the Virology Department
Prof. Stephan Günther

Outbreak Response, Capacity Building, and Operational Research
Dr. Meike Pahlmann
Dr. Giuditta Annibaldis
Dr. Lisa Oestereich
Dr. Anke Thielebein
Dr. Liana Kafetzopoulou
Dr. Nathalie Vielle
Dr. Christine Jacobsen
Dr. Emily Nelson
Dr. Ndapewa Ithete
Sabine Ferhmann
Hugo Soubrier
Julia Hinzmann
Mette Hinrichs
Jonas Müller

Molecular epidemiology and Virus Evolution
Dr. Liana Kafetzopoulou
Dr. Anke Thielebein
Dr. Emily Nelson
Adam Koletis
Glaucia Herzer
Julia Hinzmann
Robert Wildtraut
Mette Hinrichs

Philippe Lemey
Steve Pullan