Vaccine Protection Against the SARS-CoV-2 Omicron Variant in Macaques

Dan H. Barouch, M.D., Ph.D.
Director, Center for Virology and Vaccine Research
Beth Israel Deaconess Medical Center
William Bosworth Castle Professor of Medicine
Harvard Medical School
Ragon Institute of MGH, MIT, and Harvard

WHO Global Consultation, Geneva, Switzerland
February 14, 2022
Vaccine Protection Against SARS-CoV-2 Omicron in Macaques

• Goal: To evaluate the protective efficacy and immune correlates of mRNA and adenovirus vaccines against Omicron

• 30 cynomolgus macaques (N=6/group)
 • BNTx3: BNT162b2 (week 0, 3, 14)
 • BNTx2/Ad26: BNT162b2 (weeks 0, 3), Ad26.COV2.S (week 14)
 • Ad26/BNT: Ad26.COV2.S (week 0), BNT162b2 (week 14)
 • Ad26x2: Ad26.COV2.S (week 0, 14)
 • Sham: Sham (weeks 0, 3, 14)

• High-dose 10^6 PFU SARS-CoV-2 Omicron challenge at week 19 by the IN+IT routes (challenge stock provided by Mehul Suthar, Emory)
Study Outline

<table>
<thead>
<tr>
<th>Week</th>
<th>Prime</th>
<th>Prime</th>
<th>Boost</th>
<th>SARS-CoV-2 Omicron</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>BNT</td>
<td>BNT</td>
<td>14</td>
<td>BNT</td>
</tr>
<tr>
<td>3</td>
<td>BNT</td>
<td>BNT</td>
<td></td>
<td>Ad26</td>
</tr>
<tr>
<td></td>
<td>Ad26</td>
<td>Ad26</td>
<td>19</td>
<td>BNT</td>
</tr>
<tr>
<td></td>
<td>Ad26x2</td>
<td>Ad26</td>
<td></td>
<td>Ad26</td>
</tr>
<tr>
<td></td>
<td>Sham</td>
<td>Sham</td>
<td></td>
<td>Sham</td>
</tr>
</tbody>
</table>

1. BNTx3
2. BNTx2/Ad26
3. Ad26/BNT
4. Ad26x2
5. Sham
CD4+ T Cell Responses

Week 14

Week 16

Log IFN+ / CD4+ T Cells

BNTx3 BNTx2 Ad26 Ad26x2 Sham

BNTx3 BNTx2 Ad26 Ad26x2 Sham
Viral Loads (sgRNA) in BAL

Days Following Challenge

Log sgRNA Copies / ml

Sham

BNTx3

Ad26/BNT

BNTx2/Ad26

Ad26x2
Peak and Day 4 Viral Loads (sgRNA) in BAL
Viral Loads (sgRNA) in Nasal Swabs

Days Following Challenge
Peak and Day 4 Viral Loads (sgRNA) in Nasal Swabs
Day 2 Infectious Virus Titers (TCID50)

- **BAL**
 - Log TCID50 / ml
 - BNTx3, BNTx2/Ad26, Ad26/BNT, Ad26x2, Sham

- **Nasal Swab**
 - Log TCID50 / Swab
 - BNTx3, BNTx2/Ad26, Ad26/BNT, Ad26x2, Sham
Immunologic Profile of Vaccine Failures

NAb

CD8

Log NAb Titer

Log IFN+ / CD8+ T Cells

- BNTx3
- BNTx2/Ad26
- Ad26/BNT
- A26x2
- Sham

- BNTx3
- BNTx2/Ad26
- Ad26/BNT
- A26x2
- Sham
Immunologic Profile of Vaccine Failures Suggests Role of Antibodies and CD8 T Cells in Protection

![Graph showing the relationship between Log NAb Titer and Log IFN+ / CD8+ T Cells. The graph illustrates a negative correlation with red and black data points, indicating a decrease in Log IFN+ / CD8+ T Cells as Log NAb Titer increases.]
Antibody Correlates of Protection

Peak
- \(R = -0.6315 \)
- \(P = 0.0002 \)

Day 4
- \(R = -0.6917 \)
- \(P < 0.0001 \)

Log sgRNA Copies / ml vs. **Log NAb Titer**

Log sgRNA Copies / ml vs. **Log ELISA Titer**

Log sgRNA Copies / ml vs. **Log NAb Titer**

Log sgRNA Copies / ml vs. **Log ELISA Titer**
T Cell Correlates of Protection

Peak

Day 4

Log sgRNA Copies / ml vs Log IFN+ / CD8+ T Cells

R=-0.4586
P=0.0108

R=-0.3149
P=0.0901

Log sgRNA Copies / ml vs Log IFN+ / CD4+ T Cells

R=-0.6994
P<0.0001

R=-0.5075
P=0.0042
Vaccine Protection Against SARS-CoV-2 Omicron in Macaques

• Rapid virologic control in vaccinated macaques in lower respiratory tract following SARS-CoV-2 Omicron challenge

• Significant virologic control by heterologous vaccine regimens (BNT/Ad26, Ad26/BNT) in upper respiratory tract

• BNT162b2 induced higher antibody responses; Ad26.COV2.S induced higher CD8 T cell responses

• Both antibody and CD8 T cell responses correlated with virologic control; virologic failure in upper respiratory tract associated with moderate NAb titers and low CD8 T cell responses
Acknowledgements

<table>
<thead>
<tr>
<th>CVVR, Beth Israel Deaconess</th>
<th>Bioqual</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abishek Chandrashekar</td>
<td>Laurent Pessaint</td>
<td>NIAID</td>
</tr>
<tr>
<td>Jingyou Yu</td>
<td>Daniel Valentin</td>
<td>NCI</td>
</tr>
<tr>
<td>Katherine McMahan</td>
<td>Alex Van Ry</td>
<td>MassCPR</td>
</tr>
<tr>
<td>Catherine Jacob-Dolan</td>
<td>Jeanne Muench</td>
<td>Ragon Institute</td>
</tr>
<tr>
<td>Jinyan Liu</td>
<td>Mona Boursiquot</td>
<td></td>
</tr>
<tr>
<td>Xuan He</td>
<td>Anthony Cook</td>
<td></td>
</tr>
<tr>
<td>David Hope</td>
<td>Jason Velasco</td>
<td></td>
</tr>
<tr>
<td>Tochi Anioke</td>
<td>Elyse Teow</td>
<td></td>
</tr>
<tr>
<td>Julia Barrett</td>
<td>Mark G. Lewis</td>
<td></td>
</tr>
<tr>
<td>Benjamin Chung</td>
<td>Hanne Andersen</td>
<td></td>
</tr>
<tr>
<td>Nicole P. Hachmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michelle Lifton</td>
<td>Washington University</td>
<td></td>
</tr>
<tr>
<td>Jessica Miller</td>
<td>Adrianus C.M. Boon</td>
<td></td>
</tr>
<tr>
<td>Olivia Powers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michaela Sciacca</td>
<td>Emory University</td>
<td></td>
</tr>
<tr>
<td>Daniel Sellers</td>
<td>Mehul S. Suthar</td>
<td></td>
</tr>
<tr>
<td>Mazuba Siamatu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nehalee Surve</td>
<td>Tufts University</td>
<td></td>
</tr>
<tr>
<td>Haley VanWyk</td>
<td>Neharika Jain</td>
<td></td>
</tr>
<tr>
<td>Huahua Wan</td>
<td>Amanda J. Martinot</td>
<td></td>
</tr>
<tr>
<td>Cindy Wu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>