Variable loss of antibody potency against Omicron

Ben Murrell, Karolinska Institutet

Daniel J. Sheward
Changil Kim
Alec Pankow
Xaquin Castro Dopico
Robert Dyrdak
Joakim Dillner
Gunilla B. Karlsson Hedestam
Jan Albert
Ben Murrell
Karolinska Institutet, Stockholm, Sweden

Darren Martin
University of Cape Town, Cape Town, South Africa

Roy A Ehling
Sai Reddy
ETH Zürich - Department of Biosystems Science and Engineering
Pseudovirus neutralization assay
Spike from Sample

- Received suspected (due to SGTF) Omicron samples
- Use long-read spike PCR protocols to clone patient spike into codon optimized D614G
 - Our Omicron spike plasmid thus has native codons from AAs 43 to 1000, but is codon optimized outside of this.
- All AAs identical to the Omicron consensus

Timeline: 8 days from receiving Omicron samples to sharing neutralization results
WHO International Standard

![Graph showing neutralization percentage against dilution for WT and Omicron strains.]

WHO IS (20/136)

Neutralization (%) vs. dilution

40x drop

WT

Omicron
Mabs produced “in house” by Sai Reddy’s lab (ETH Zurich)
- Sequences are the same as the clinical versions, but production and Fc modifications differ.

<table>
<thead>
<tr>
<th>Mab</th>
<th>D614G IC50 (ug/ml)</th>
<th>Omicron IC50 (ug/ml)</th>
<th>Fold Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH_REGN-10933</td>
<td>0.009</td>
<td>>10</td>
<td>>1100</td>
</tr>
<tr>
<td>IH_REGN-10987</td>
<td>0.008</td>
<td>>10</td>
<td>>1200</td>
</tr>
<tr>
<td>IH_LY-CoV555</td>
<td>0.007</td>
<td>>10</td>
<td>>1400</td>
</tr>
<tr>
<td>IH_LY-CoV16</td>
<td>0.037</td>
<td>>10</td>
<td>>270</td>
</tr>
<tr>
<td>IH_S309</td>
<td>0.104</td>
<td>0.2</td>
<td>2</td>
</tr>
</tbody>
</table>

Regeneron
Eli Lilly
Vir (sotrovimab)
Cohorts

- 17 recent (week 48) Blood Donor samples.
 - No information.
- 17 previously-infected Hospital Workers.
 - Confirmed PCR+ in early 2020.
 - Varied subsequent vaccination histories.
 - 2xPfizer
 - 2xAZ
 - AZ+Pfizer

![Graphs showing PSV Neutralization (ID50 titer) for Blood Donor and Hospital Worker cohorts.](image)
Assay or Cohort?

Convalescent

Blood Donor

Hospital Worker

PSV Neutralization (ID₅₀ titer)

WT Omicron

WT Omicron

WT Omicron
Conclusions

● Large differences in fold change between cohorts.
● In a Hospital Worker cohort with high exposure levels, but also in a random sample of *recent* blood donors, loss of neutralization was less extreme than expected.
● Given expected cohort differences, and uncertainty about assays, standardization across labs is critical.

● **Big picture:** In our cohorts, existing boosters may suffice (even without a booster broadening effect), and perhaps the situation is not as dire as would have been initially expected.
Acknowledgements

Daniel J. Sheward

Changil Kim
Alec Pankow
Xaquin Castro Dopico
Robert Dyrdak
Joakim Dillner
Gunilla B. Karlsson Hedestam
Jan Albert
Karolinska Institutet, Stockholm, Sweden

All staff at the Department of Clinical Microbiology, Karolinska University Hospital involved in SARS-CoV-2 routine diagnostics, S-gene screening and sequencing.

Darren Martin
University of Cape Town, Cape Town, South Africa

Roy A Ehling
Sai Reddy
ETH Zürich - Department of Biosystems Science and Engineering