Non-neutralizing humoral epitopes: What do we need for protection?

Galit Alter, PhD
Ragon Institute of MGH, MIT, and Harvard
MGH Infectious Disease Division
Immunology, Harvard School of Public Health
Proposed mechanisms of protection against SARS-CoV-2
Non-neutralizing antibodies may bind all over the spike, but different epitopes may be more critical or protection.
Breaking protection – via dose-de-escalation – to define correlates of immunity

Ad26

Viral Loads

Binding Antibodies

Neutralizing Antibodies

T cells
Dose de-escalation profoundly affects Fc-effector function

Binding Titers
- IgG1 Log MFI
- Log MFI

FcR2A
- Log MFI

Monocyte Phagocytosis
- Cellular Phagocytosis Score

Neutrophil Phagocytosis
- Neutrophil Phagocytosis Score

Complement deposition
- Complement Deposition Score

NK cell activation
- MPs% of NKcells

- Group I, 1x10^11 VP, n=5
- Group II, 5x10^10 VP, n=5
- Group III, 1.125x10
- Group IV, 2x10^8 VP, n=5
- Group V, Sham, n=5

III, 1.125x10

\[\text{sham} \]
Antibody titers and function strongly predict protection from infection and viral control.
RBD and S2-specific non-neutralizing antibodies play a dominant role in protection.
Conclusions

Antibody functions targeting the RBD (highly exposed) and the S2 (highly conserved) are likely key to protection against SARS-CoV-2 infection & disease.