Immune Responses Post COVID-19 Vaccination: Possible Implications for the Omicron Variant

Dan H. Barouch, M.D., Ph.D.
Director, Center for Virology and Vaccine Research
Beth Israel Deaconess Medical Center
William Bosworth Castle Professor of Medicine
Harvard Medical School
Ragon Institute of MGH, MIT, and Harvard

WHO Meeting on COVID-19 Vaccine Research, Geneva, Switzerland
December 6, 2021
Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans

Received: 15 April 2021
Accepted: 1 June 2021
Accelerated Article Preview Published online 9 June 2021

Cite this article as: Alter, G. et al. Immunogenicity of Ad26.COV2.S vaccine...
Immunogenicity of Ad26.COV2.S Against SARS-CoV-2 Variants: Neutralizing Antibody Responses

Placebo

Ad26.COV2.S

Day 57

Day 71

Neutralizing Antibody Titer

No observed titer differences between Placebo and Ad26.COV2.S groups for WA-1/2020, BMG, B.1.1.7, CK-02, P.1, and B.1.529 variants.
Immunogenicity of Ad26.COV2.S Against SARS-CoV-2 Variants: Fc Functional Antibody Responses
Immunogenicity of Ad26.COV2.S Against SARS-CoV-2 Variants: CD8 and CD4 T Cell Responses
Immunogenicity of Ad26.COV2.S Against SARS-CoV-2 Variants

- NAb responses reduced 5-fold to B.1.351 and 3.3-fold to P.1 variants
- Less impact of variants on binding and Fc functional antibodies
- No impact of variants on CD8 T cell responses
- It is likely that cellular immune responses will be more preserved against SARS-CoV-2 variants that partially escape NAb responses

Alter et al. Nature, June 9, 2021
Differential Kinetics of Immune Responses Elicited by Covid-19 Vaccines
Magnitude and Durability of BNT162b2, mRNA-1273, and Ad26.COV2.S Antibody Responses Against SARS-CoV-2

Live Virus nAb

Pseudovirus nAb

RBD IgG

<table>
<thead>
<tr>
<th>BNT162b2</th>
<th>mRNA-1273</th>
<th>Ad26.COV2.S</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>27</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>6mo</th>
<th>8mo</th>
<th>Peak</th>
<th>6mo</th>
<th>8mo</th>
<th>Peak</th>
<th>8mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1789</td>
<td>543</td>
<td>53</td>
<td>5858</td>
<td>1524</td>
<td>133</td>
<td>146</td>
<td>629</td>
</tr>
</tbody>
</table>

Fold Change (Peak to 8 months)

- 34
- 44
+4.3

<table>
<thead>
<tr>
<th>BNT162b2</th>
<th>mRNA-1273</th>
<th>Ad26.COV2.S</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>6mo</th>
<th>8mo</th>
<th>Peak</th>
<th>6mo</th>
<th>8mo</th>
<th>Peak</th>
<th>8mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>262</td>
<td>160</td>
<td>1569</td>
<td>414</td>
<td>273</td>
<td>391</td>
<td>185</td>
</tr>
</tbody>
</table>

Fold Change (Peak to 8 months)

- 4.5
- 5.7
- 2.11

<table>
<thead>
<tr>
<th>BNT162b2</th>
<th>mRNA-1273</th>
<th>Ad26.COV2.S</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>27</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>6mo</th>
<th>8mo</th>
<th>Peak</th>
<th>6mo</th>
<th>8mo</th>
<th>Peak</th>
<th>8mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>21564</td>
<td>2432</td>
<td>755</td>
<td>25677</td>
<td>4346</td>
<td>1546</td>
<td>1361</td>
<td>843</td>
</tr>
</tbody>
</table>

Fold Change (Peak to 8 months)

- 28.6
- 16.6
- 1.6

Collier et al. NEJM. October 15, 2021
Magnitude and Durability of BNT162b2, mRNA-1273, and Ad26.COV2.S Antibody Responses Against Variants

- **WA1/2020**
 - NT50
 - BNT162b2
 - mRNA-1273
 - Ad26.COV2.S
 - n: 29, 30, 23, 20, 21, 20, 8, 8
 - Peak 6mo 8mo Peak 6mo 8mo Peak 6mo 8mo
 - 700 262 160 1569 414 273 391 185

- **Delta (B.1.617.2)**
 - NT50
 - BNT162b2
 - mRNA-1273
 - Ad26.COV2.S
 - n: 29, 30, 23, 20, 21, 20, 8, 8
 - Peak 6mo 8mo Peak 6mo 8mo Peak 6mo 8mo
 - 191 80 67 274 115 76 53 107

- **Alpha (B.1.1.7)**
 - NT50
 - BNT162b2
 - mRNA-1273
 - Ad26.COV2.S
 - n: 29, 30, 23, 20, 21, 20, 8, 8
 - Peak 6mo 8mo Peak 6mo 8mo Peak 6mo 8mo
 - 378 128 89 786 223 107 60 148

- **Beta (B.1.351)**
 - NT50
 - BNT162b2
 - mRNA-1273
 - Ad26.COV2.S
 - n: 29, 30, 23, 20, 21, 20, 8, 8
 - Peak 6mo 8mo Peak 6mo 8mo Peak 6mo 8mo
 - 130 63 54 293 103 86 33 62
Magnitude and Durability of BNT162b2, mRNA-1273, and Ad26.COV2.S T Cell Responses Against SARS-CoV-2

<table>
<thead>
<tr>
<th></th>
<th>CD4</th>
<th>CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNT162b2</td>
<td>mRNA-1273</td>
<td>Ad26.COV2.S</td>
</tr>
<tr>
<td>n</td>
<td>3 24 20</td>
<td>8 9 8</td>
</tr>
</tbody>
</table>

%IFN+ / CD4+CD3+ T Cells

<table>
<thead>
<tr>
<th></th>
<th>6mo</th>
<th>8mo</th>
<th>6mo</th>
<th>8mo</th>
<th>Peak</th>
<th>6mo</th>
<th>8mo</th>
<th>Peak</th>
<th>8mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4 Peak</td>
<td>0.042</td>
<td>0.021</td>
<td>0.027</td>
<td>N/A</td>
<td>0.036</td>
<td>0.043</td>
<td>0.043</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>CD8 Peak</td>
<td>0.017</td>
<td>0.035</td>
<td>0.016</td>
<td>N/A</td>
<td>0.016</td>
<td>0.017</td>
<td>0.12</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>
Differential Kinetics of Immune Responses Elicited by BNT162b2, mRNA-1273, and Ad26.COV2.S

- mRNA vaccines induce high initial antibody titers, but these responses decline sharply by 6 months and even further by 8 months.

- Ad26.COV2.S induces lower initial antibody titers, but these responses are durable and show minimal decline for 8 months.

- Ad26.COV2.S induces higher CD8+ T cell responses than mRNA vaccines.
Ad26.COV2.S vs. BNT162b2 Boosting in Individuals Vaccinated with BNT162b2: NAb Responses

Time Following Boost Immunization

Tan et al. medRxiv December 5, 2021
Ad26.COV2.S vs. BNT162b2 Boosting in Individuals Vaccinated with BNT162b2: CD8 T Cell Responses

Time Following Boost Immunization

Tan et al. medRxiv December 5, 2021
Ad26.COV2.S vs. BNT162b2 Boosting in Individuals Vaccinated with BNT162b2

- Ad26.COV2.S and BNT162b2 boost antibody titers similarly by week 4 in individuals vaccinated with BNT162b2 but with different kinetics

- Ad26.COV2.S is more potent than BNT162b2 at boosting CD8 T cell responses

- “Mix-and-match” and homologous boosts increase immune responses that will likely provide cross-reactivity against SARS-CoV-2 variants
Acknowledgements

Beth Israel Deaconess
Ai-ris Collier
Sabrina Tan
Jingyou Yu
Jinyan Liu
Abishek Chandrashekar
Erica Borducchi
Lisa H. Tostanoski
Katherine McMahan
Catherine Jacob-Dolan
Aiquan Chang
Tochi Anioke
Michelle Lifton
Joseph Nkolola
Kathryn Stephenson

Janssen / J&J
Mathieu Le Gars
Jerald Sadoff
Anne Marit de Groot
Dirk Heerwegh
Frank Struyf
Macaya Douoguih
Johan Van Hoof
Hanneke Schuitemaker
Mathai Mammen
Paul Stoffels

Ragon Institute
Galit Alter
Caroline Atyeo
Sally Shin

Funding
BARDA/J&J
Ragon Institute
MassCPR
NIAID

All Trial Volunteers!