Pathogen X

WHO Health Emergencies Programme Day 1
Pathogen X will happen again

- **Context:**
 - Climate change
 - Urbanisation: climate change and urbanisation may disrupt niches
 - Increasing zoonotic and vector borne disease risk
 - Impact of human behaviour and agricultural practices on ecosystems
 - New diseases emerge primarily in LMICs: least resourced and most vulnerable
 - One Health approach including live animal trading data, wet markets
 - Influence of geopolitical context: human migration, conflict
 - Viral, pandemic influenza, AMR, bacteria?
 - May come from something we know or something we don’t
 - Pathogen X may be very different from past outbreaks even if similarities to previous outbreaks
Lesson 1: Big ticket lessons

- ‘One for all approach’
- Require ‘Hot start versus Warm start’
- ‘Avoid cycles of panic and neglect’
- ‘Avoid Grey Rhino approach: Not ready, we cannot work together’
- Maintain capabilities between outbreaks: funding and utility
- Importance of
 - Trust in science
 - Trust in Governments including provision of timely access to proven technologies
 - Community engagement and influencers
- Anticipate fear and stigma
- Equity considerations and North:South divide
 - Importance of strengthening engagement of LMICs in research
 - Equitable global access to therapeutics, vaccines, diagnostics and countermeasures
 - IP and tech transfer considerations
 - Manufacturing
- Trans-disciplinary response including science communicators
- Resources are finite so rational use needed: avoid duplication
- Applying the science of foresight
Lesson 2: ‘Sharing, sharing, sharing’

• ‘Proud to be with WHO: Sense of community and belonging’
• Importance of WHO as convenor and normative agency
• Virtual platforms have facilitated democratisation of data
• Importance of partnership and collaboration in data sharing: countries, scientists, international agencies, private sector
• Standardisation: Assays, Animal models, Clinical trial design and networks, Endpoints, Ethical frameworks, regulatory approaches
• Rapid data sharing: open access, pre-prints, genomic and lab networks, animal models
• Include diverse data bases for surveillance: public, private, media, security, non-traditional sources, ProMED, GISAID
Lessons 3: From the past for the future

• Takes time to recognise outbreaks, and populations are likely to be susceptible
• Global response must be rapid: Could COVID-19 pandemic have been avoided with earlier global responses?
• Importance of Surveillance networks: laboratory, clinical, community, animal and human, inter-species jump, prior immunity, spread, disease course
• Investing in new surveillance technologies: digital technology, rapid diagnostics, multiplex diagnostics, genomics, affordable lab assays, system for pathogen X diagnosis must also be useful for endemic diseases, local manufacturing enabling access
• Predicting the future: Modelling, epidemiology, identify hotspots, phylogeny, genomics, serology, new software tools in advance of outbreak, science fiction
• Human capacity building especially in LMIC for surveillance, lab, modelling, clinical management
• Transdisciplinary research including behavioural, social sciences, anthropology, bioethics……
• Increase trust by ensuring community access to: diagnostics, vaccines, therapeutics, medical countermeasures
• Strengthen public health responses
• Curriculum change for awareness in Health Care Professionals
• Improve public health education for children in school
Lesson 4: Viruses, Bacteria and Pathogen X

• Expedite and democratise microbial surveillance and discovery
• Risk: Around 120 viruses from 27 families known to infect humans with potential for increased H-H transmission and virulence, some with no prototype vaccine or therapeutics
• Risk of AMR: patterns of antibiotic use and need for new drugs, hospital spread (NNU, ICU), community, One Health
• New diagnostics: Faster, cheaper, easier; for individual patients; for surveillance and monitoring; predicting new outbreaks, source of outbreak
 • Pathogen genomics, Metagenomic sequencing
 • sequence-capture based diagnostics,
 • screening for viral diseases: predictive technologies and animal monitoring to identify areas of high risk,
 • point of care technologies (known pathogens),
 • bioinformatics,
 • multiplex diagnostics
• Global regulatory engagement to enable evaluation
• Global pathogen resources e.g. Genbank, GISAID, regional biobanks
• Tech transfer
Lesson 5: WHO’s future role: ‘Make predicting the future more scientific’

- Facilitate global preparedness during peacetime
- WHO Prioritisation Review Committee:
 - Viral Family Review Group and Bacterial review group
 - Transmission, Virulence, Counter measures
 - Liaising with other global groups who have undertaken prioritisation exercise
- Global alignment with international stakeholders
- Ongoing normative role:
 - R&D Blueprint
 - Standardisation of assays and animal models
 - Diagnostic preparedness
 - Clinical trial design for changing scenarios
 - Vaccine and therapeutic research support
 - Regulatory authority dialogue and reliance
 - Novel modelling approaches
 - Prioritisation of engagement of LMIC scientists and clinicians
 - Sharing of global expertise
 - Transdisciplinary consultations
 - Ongoing review of IHR and pandemic preparedness
Thank you