The challenge of sero-epidemiology for monkeypox

S. Sathesh Panayampalli, PhD

Immunodiagnostics and Proteomics Team
Poxvirus & Rabies Branch (PRB)
Division of High-Consequence Pathogens and Pathology (DHCPP)
National Center for Emerging and Zoonotic Infectious Diseases (NCEZID)

June 2, 2022
Human Monkeypox

- Monkeypox (MPX) – caused by MPXV infection
- Fever, swollen lymph nodes, lesions
- Two clades – West African / Congo Basin
- *Poxviridae, Chordopoxvirinae, Orthopoxvirus* genus
- Large dsDNA virus, ~200 kB genome, encodes ~200 ORFs
- OPXV genus
 - Variola virus, vaccinia virus, cowpox virus
 - Proteins encoded by OPXVs exhibit high percent identity
 - Ab developed against one OPXV - broadly reactive
 - Cross-protection provided by smallpox vaccine (Vaccinia virus)
 - Ab cross-reactivity challenges species-specific detection
Serology

- Focus particularly on humoral response
- Generation of immune response after infection - clearance of infection, resolution of lesions
- Detection of Abs - not a diagnostic test
- Serology is important to determine the extent of spread in a population
- Secondary cases – asymptomatic / pausi-symptomatic group
- Anti-OPXV results confounded by prior vaccination / exposure
- Childhood smallpox vaccination – long lasting Ab response
- Vaccination status, age of patients / contacts - important factors to interpret the results
Serology

➢ Types of Abs
 ➢ Neutralizing Antibodies
 ➢ PRNT – Plaque reduction neutralization test
 ➢ Reporter based assays
 ➢ GFP – Flow cytometry/Microscopy
 ➢ Luciferase
 ➢ Binding Antibodies – Ab isotype specific detection
 ➢ ELISA
 ➢ Virus particles
 ➢ Proteins
 ➢ Peptides
 ➢ IFA – indirect fluorescent antibody test
 ➢ Low-throughput
 ➢ Protein microarray

1. Antigen is fixed to a surface.
2. Patient serum is added; if antibodies are present, they bind to the antigen.
3. Secondary antibody (with fluorescent label) is added; if patient antibodies are present, the secondary antibody binds to the patient antibodies.
Serology

- Neutralizing antibodies
 - Two infectious forms of virions – Mature Virus and Extracellular Virus
 - Virus entry is mediated by a large (11-proteins) entry/fusion complex present on the MV membrane
 - Different Ab requirements for MV vs EV neutralization
 - PRNT or reporter-based assays focus mainly on MV neutralization
 - Disadvantages of PRNT
 - Live OPXV
 - Takes 2-3 days

EV membrane, 6 proteins

MV, 30 proteins
Serology

- **Binding antibodies - ELISA**
 - IgM – 1:50 dilutions of serum
 - IgG – 1:100 dilutions of serum
 - End-point titer
 - Correlation with PRNT
 - Endpoint vs PRNT titers better correlation
 - Inactivated virus / proteins / peptides as an antigen
 - IgM positive
 - Indicates recent infection by an OPXV
 - Important, with Epi and Clinical data – probable case
Serology

- Anti-OPXV IgM assay developed during the 2003 US MPX outbreak
 - Capture based assay
Serology

- Anti-OPXV IgM assay
 - Capture based assay

Karem et al, Clin Diagn Lab Immunol, 2005
Serology

- Anti-OPXV IgM assay
 - Capture based assay
 - 2003 US outbreak – 94% IgM pos
 - IgM Pos in previously vaccinated – antigenic differences
 - 2007-11 DRC Kole MPX study – 94% IgM pos
 - All MPX positive cases pos for IgG
- IgM – detected 4-56 days post-rash onset
- IgG – detected 3-7 days following IgM response (in case of primary exposure)

Karem et al, Clin Diagn Lab Immunol, 2005
Pittman et al. medRxiv, 2022
Serology in MPX cases

➢ Sero-positivity in MPX positive cases
 ➢ Both IgM/IgG positive
 ➢ ROC, 2017
 ➢ Sierra Leone, 2017 – MPX positive case after 44 years
 ➢ Nigeria, 2017/18 – MPX positive case after 39 years

➢ 2021 travel related MPX cases in the US
 ➢ Both cases positive for IgM

➢ 2022 MPX outbreak
 ➢ One case tested is positive for IgM positive

Doshi et al., Emer Inf Dis, 2019
Reynolds et al, Emer Inf Dis, 2019
Yinka-Ogunleye et al., Lancet Inf Dis, 2019
Unpublished
Anti-OPXV sero-surveillance

- Cross-sectional sero-surveys to determine prevalence of anti-OPXV Abs
- Uganda, 2004/5; 2011 – 60/20% IgG pos (n=3246)
Anti-OPXV sero-surveillance

- High sero-positivity rate demonstrate potential OPXV circulation
 - Ghana, 2004 – 53 / 36 % IgG pos (n=172) (total / naïve population)
 - Republic of Congo, 2003 – 57 / 49 % IgG pos (n=994)
 - Sierra Leone, 2007 – 10 / 1 % IgG pos (n=1596)
 - Cote d’Ivoire – 51 / 19 % (n=737)
 - DRC – 60 / 26 % (n=267)

Reynolds et al., Am J Trop Med Hyg, 2010
MacNeil et al., BMC Res Notes, 2011
Leendertz et al., Viruses, 2017
Serology assay – additional developments

- Species specific assay
 - Peptide assay – monkeypox specific
 - High sensitivity and specificity
 - Protein microarray based
 - VACV / VARV proteome – Ab response against individual proteins

Dubois et al., Vector-Borne and Zoo Dis, 2012
Davies et al., J. Virol, 2008
Serology assay – additional developments

- Species specific assay
 - Peptide assay – monkeypox specific
 - High sensitivity and specificity
 - Protein microarray based
 - VACV / VARV proteome
 - With Epi/Ecology data – non-VACV Ab detection
 - Retrospective case – Akhmeta virus, Georgia

Townsend et al., J Inf Dis, 2017
Serology assay availability

- Orthopoxvirus specific Ab detection
 - ELISA or other tests are not widely available
 - USA, Germany, Italy, Brazil, UK
 - Commercial ELISA
 - www.myBiosource.com
 - Pox ELISA kit: Rabbit poxvirus
 - No assay details, but potential to cross-react and identify anti-MPXV response
 - Will explore to validate the assay
Serology assay @ CDC

- CDC routinely performs anti-OPXV serology assays – IgG/IgM
 - CLIA approved / ISO17025

- CDC has been reached out by few groups for serological testing

- Research Collaboration Agreement and Simple Letter Agreement available

- Please reach out to us if you are interested
 - eocevent334@cdc.gov
 - spanayampalli@cdc.gov

- https://www.cdc.gov/poxvirus/monkeypox/index.html

National Center for Emerging and Zoonotic Infectious Diseases
Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology
Acknowledgements

Current and previous members of the Poxvirus and Rabies Branch
The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention