Immune Correlates Analysis of the mRNA-1273 Vaccine Efficacy Trial

Peter Gilbert (for the Moderna / USG COVID-19 Response Team Partnership)
Fred Hutchinson Cancer Research Center
University of Washington

WHO Global Consultation on Correlates of Protection
September 3, 2021
Immune Correlates Analysis of the mRNA-1273 COVID-19 Vaccine Efficacy Trial

doi: https://doi.org/10.1101/2021.08.09.21261290

Acknowledgements: Matt Hepburn, Robert Johnson, John Mascola, Mary Marovich, Merlin Robb
USG Vaccines Team and Working Groups of the USG Vaccines Development Team (R&D)

- **USG Vaccines Team**
 - Lead: Matt Hepburn

- **USG Vaccines Development Team (R&D)**
 - Chair: John Mascola

Working group core members
- Chris Houchens (BARDA)
- Karen Martins (BARDA)
- Lakshmi Jayashankar (BARDA)
- Flora Castellino (BARDA)
- Evan Sturtevant (BARDA)

Immune assays working group
- Chairs: Ruben Donis (BARDA), Rick Koup (NIH)

Pre-clinical working group
- Chairs: Cristina Cassetti, April Brys

Clinical working group
- Chairs: Merlin Robb, Mary Marovich

USG laboratory leads
- Adrian McDermott (NIH VRC)
- David Montefiori (Duke)
- Janet Lathey (NIH / Battelle)
- Ralph Baric (UNC)
Acknowledgments

- COVE study participants
- Moderna COVE study team
- CoVPN colleagues (biostatistics, laboratory, clinical, community)
 - Biostatistics: Weiping Deng, Honghong Zhou, Shu Han (Moderna), David Benkeser (Emory), Youyi Fong (Fred Hutch), et al.
 - Immunology labs: Adrian McDermott et al. (VRC-NIAID-NIH), David Montefiori et al. (Duke)
- NIH NIAID and BARDA colleagues (Rick Koup, Ruben Donis, et al.)
- Funding support
 - Public Health Service Grant UM1 AI068635 to the HVTN SDMC, Fred Hutch from the National Institute of Allergy and Infectious Diseases (NIAID) and by the Intramural Research Program of the NIAID
 - Scientific Computing Infrastructure at Fred Hutch funded by ORIP grant S10OD028685
 - Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, under Contract No. 75A50120C00034, and Moderna, Inc.
mRNA-1273 Vaccine Efficacy

Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine

N=30,415 participants enrolled July 27, 2020 to October 23, 2020

- Primary endpoint is COVID-19:
 - First occurrence of symptomatic COVID-19 with virologically-confirmed SARS-CoV-2 infection in participants with no evidence of previous SARS-CoV-2 infection

- Per-protocol cohort analysis
 - VE = 94.1% (95% CI 89.3 to 96.8%)

MITT cohort analysis

- Incidence Rate (95% CI) per 1000 person-yr:
 - Placebo: 79.7 (70.5–89.9)
 - mRNA-1273: 5.6 (3.4–8.8)

Cumulative Covid-19 Incidence (%)

Days since Randomization

100 μg of mRNA-1273

2X

28 days apart

Placebo

2X
COVE Trial Blood Storage for Immunogenicity and Immune Correlates Analyses

Article assessed D29 and D57 Ab markers as correlates of COVID-19 through 4 months post D29

Injection

Timeline

Serum samples

D0 D1 D29 D57

Stage 1 – for peak Ab correlates analysis

D209 D394 D759

Stage 2 – for durability study / more correlates analysis

• Data cut for immune correlates analyses: March 26, 2021
• COVID-19 endpoint cases diagnosed from September 2020 to March 2021
Two-Phase Case-Cohort Sampling Design for Assessing Antibody Marker Correlates Against the COVID-19 Primary Endpoint

- Sampling stratified by baseline covariates (Vaccine, Placebo) x (SARS-CoV-2 Neg, Pos) x (Baseline demographics)

- Immune correlates analyses in per-protocol baseline negative cohort
 - Per-protocol = received both doses without major protocol violations
Four Antibody Markers Assessed as Immune Correlates

1. bAb to Spike
2. bAb to RBD

Readout BAU/ml (= IU/ml) based on NISBC standard*

3. PsV nAb ID50 titer
4. PsV nAb ID80 titer

Readout calibrated titers to the WHO International Standard (cID50, cID80)*

- Binding antibody (bAb) measured from MSD VRC assay
 - VRC-NIAID-NIH (Adrian McDermott)

- Neutralizing antibody (nAb) lentivirus-based spike-pseudotyped virus assay in 293T cells
 - Duke University (David Montefiori)

*Enables comparison of results to those from other studies, e.g. vs. UK phase 3 trial of the ChAdOx1 nCoV-19 Vaccine (Merryn Voysey’s talk)
Immune Correlates Objectives Addressed in the Article

• To assess Day 29 and Day 57 Ab markers as immune correlates:

CoR

1. Correlates of risk in vaccine recipients (prediction of COVID-19)

2. Mediation causal methods
 a. Controlled VE (Robins/Greenland/Pearl causal effects)
 • Compare COVID-19 risk under assignment to (vaccine, Ab marker
 value) vs. under assignment to placebo
 b. Mediation of VE (Natural direct and indirect effects)
 • Estimate proportion of overall VE mediated by the Ab marker
Numbers of Per-protocol Baseline Negative Vaccine Recipients with Antibody Data

<table>
<thead>
<tr>
<th>Group</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunogenicity subcohort</td>
<td>1010</td>
</tr>
<tr>
<td>COVID-19 cases for Day 29 marker correlates</td>
<td>46</td>
</tr>
<tr>
<td>COVID-19 cases for Day 57 marker correlates</td>
<td>36</td>
</tr>
</tbody>
</table>

- Day 29 marker analyses: include all cases starting 7 days post Day 29
- Day 57 marker analyses: include all cases starting 7 days post Day 57
Context: The Article Assessed Correlates Against COVID-19 Caused by Viruses Close to the Vaccine Strain

Nextstrain data September to March in U.S.

- 20A/B/C/G: clades of the Wuhan ancestral strain (All identical in Spike, w/ G614)
- 20I: Alpha (UK variant B.1.1.7)
- 21F: Iota (New York variant B.1.526)
- 21C: Epsilon (California variants B.1.427/B.1.429)

Spike Sequence Hamming Distances to the Vaccine Strain (# Mismatches)

*Distribution based on 1122 randomly sampled sequences from GISAID to represent sequences circulating during the COVE trial (Craig Magaret)
Correlations of Day 57 Ab Markers in Per-Protocol Baseline Negative Vaccine Recipients

- High correlation of bAb Spike and bAb RBD responses ($r=0.969$)
- High correlation of PsV nAb cID50 and cID80 responses ($r=0.961$)
- Article focused on reporting results for bAb Spike and cID50
- Moderate-to-high correlation of bAb markers with nAb markers (0.734-0.800)
Antibody Levels Lower in Vaccine Breakthrough Cases than Vaccine Non-Cases for All 4 Markers and Both Time Points

<table>
<thead>
<tr>
<th>Marker</th>
<th>GMC or GMT (95% CI)</th>
<th>Ratio</th>
<th>Cases/Non-Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Cases</td>
<td>Cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bAb Spike</td>
<td>318 (292, 347)</td>
<td>183 (126, 266)</td>
<td>0.57 (0.39, 0.84)</td>
</tr>
<tr>
<td>bAb RBD</td>
<td>327 (302, 354)</td>
<td>207 (147, 293)</td>
<td>0.63 (0.44, 0.90)</td>
</tr>
<tr>
<td>nAb cID50</td>
<td>13.0 (11.9, 14.1)</td>
<td>7.6 (5.4, 10.8)</td>
<td>0.59 (0.41, 0.84)</td>
</tr>
<tr>
<td>nAb cID80</td>
<td>29.0 (27.1, 31.0)</td>
<td>18.0 (13.3, 24.2)</td>
<td>0.62 (0.46, 0.84)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marker</th>
<th>GMC or GMT (95% CI)</th>
<th>Ratio</th>
<th>Cases/Non-Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Cases</td>
<td>Cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bAb Spike</td>
<td>2652 (2457, 2863)</td>
<td>1890 (1449, 2465)</td>
<td>0.71 (0.54, 0.94)</td>
</tr>
<tr>
<td>bAb RBD</td>
<td>3937 (3668, 4227)</td>
<td>2744 (2056, 3664)</td>
<td>0.70 (0.52, 0.94)</td>
</tr>
<tr>
<td>nAb cID50</td>
<td>247 (231, 265)</td>
<td>160 (117, 220)</td>
<td>0.65 (0.47, 0.90)</td>
</tr>
<tr>
<td>nAb cID80</td>
<td>478 (450, 508)</td>
<td>332 (248, 444)</td>
<td>0.69 (0.52, 0.93)</td>
</tr>
</tbody>
</table>
Antibody Levels Lower in Vaccine Breakthrough Cases than Vaccine Non-Cases

Spike IgG

<table>
<thead>
<tr>
<th>Cohort Event</th>
<th>Day 29</th>
<th>Day 57</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>Rate</td>
<td>67.5%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cohort Event</th>
<th>Day 29</th>
<th>Day 57</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>36</td>
<td>1005</td>
</tr>
<tr>
<td>Rate</td>
<td>62.5%</td>
<td>100%</td>
</tr>
</tbody>
</table>

PsV nAb cID50

<table>
<thead>
<tr>
<th>Cohort Event</th>
<th>Day 29</th>
<th>Day 57</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>Rate</td>
<td>62.5%</td>
<td>65.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cohort Event</th>
<th>Day 57</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>36</td>
</tr>
<tr>
<td>Rate</td>
<td>100%</td>
</tr>
</tbody>
</table>
Each Antibody Marker is an Inverse Correlate of Risk in Vaccine Recipients

<table>
<thead>
<tr>
<th>Antibody Marker</th>
<th>Estimated Hazard Ratio per 10-fold Increase in the Marker (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 29</td>
</tr>
<tr>
<td>bAb Spike</td>
<td>0.54 (0.40, 0.74)</td>
</tr>
<tr>
<td>bAb RBD</td>
<td>0.45 (0.30, 0.69)</td>
</tr>
<tr>
<td>PsV nAb cID50</td>
<td>0.33 (0.17, 0.64)</td>
</tr>
<tr>
<td>PsV nAb cID80</td>
<td>0.19 (0.07, 0.56)</td>
</tr>
</tbody>
</table>

*Cox model adjusted for communities of color indicator, at-risk status, and baseline risk score
Day 57 Markers: Cumulative Incidence of COVID-19 Decreases with Ab Level (Cox Modeling)

Risk by clD50: Varies from 0.030 at undetectable to 0.0009 at titer 10,000 (33x)
• This nonparametric analysis supports a ‘continuum’ model that the higher the antibody level the greater the vaccine protection

Van der Laan Lars, Zhang, Gilbert (2021, arXiv)
Day 57 Markers Impact VE*

Estimated VE at < LOD = 50%

Estimated VE at < LOD = 61%

*Sawicki, Fong, Carone (2021, arXiv)
Causal Mediation Analysis of Day 29 Neutralizing Ab Markers*

<table>
<thead>
<tr>
<th>Point Estimates (95% Confidence Intervals)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Day 29 cID50 Titer</td>
</tr>
<tr>
<td>Day 29 cID80 Titer</td>
</tr>
</tbody>
</table>

Direct VE: VE comparing vaccine vs. placebo with marker set to undetectable
Indirect VE: VE in vaccinated at observed marker vs. at marker deactivated to be undetectable
Prop. Mediated: Fraction of total risk reduction from vaccine attributed to the marker

- Interpretation of cID50 titer result: If circulating neutralizing antibodies at Day 29 could be removed but the other consequences of vaccination remained, overall VE would be expected to reduce by 68.5% from 92.3% to 56.0% (on the log scale)

*Benkeser, Diaz, Ran (2021, arXiv)
Discussion
Summary of Correlates of Risk Results in Vaccine Recipients

- The 4 antibody markers at Day 29 and Day 57 are inverse correlates of risk of COVID-19, passing pre-specified family-wise error rate multiplicity adjustment

<table>
<thead>
<tr>
<th>Cumulative Incidence of COVID-19 Through 4 Months Post Dose 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Point estimate</td>
</tr>
<tr>
<td>Day 29 cID50 Titer</td>
</tr>
<tr>
<td>Undetectable</td>
</tr>
<tr>
<td>6,350 (Max)</td>
</tr>
<tr>
<td>0.0135</td>
</tr>
<tr>
<td>0.0002</td>
</tr>
<tr>
<td>Day 57 cID50 Titer</td>
</tr>
<tr>
<td>Undetectable</td>
</tr>
<tr>
<td>10,000 (Max)</td>
</tr>
<tr>
<td>0.030</td>
</tr>
<tr>
<td>0.0009</td>
</tr>
</tbody>
</table>
Vaccine efficacy against COVID-19 increases with Day 29 and Day 57 antibody level for each of the 4 antibody markers.

<table>
<thead>
<tr>
<th>Day 57 cID50 Titer</th>
<th>Point Estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undetectable (< 2.4)</td>
<td>51% (−51, 83%)</td>
</tr>
<tr>
<td>5</td>
<td>71% (30, 87%)</td>
</tr>
<tr>
<td>10</td>
<td>78% (54, 89%)</td>
</tr>
<tr>
<td>100</td>
<td>91% (87, 94%)</td>
</tr>
<tr>
<td>1000</td>
<td>96% (94, 98%)</td>
</tr>
</tbody>
</table>

~5-fold increase in VE from titer 5 to 1000
Summary of Correlates of Protection: Mediation Result

- Estimated proportion of mRNA-1273 VE against COVID-19 mediated by cID50 titer = 68%
 - Comparable to proportion VE mediated by HAI titer for inactivated flu vaccine

Estimated proportion of IIV VE mediated against B/Victoria influenza illness mediated by HAI = 57%

*Cowling BJ, Lim WW, Perera RA, Fang VJ, Leung GM, Peiris JM, Tchetgen Tchetgen EJ. Influenza hemagglutination-inhibition antibody titer as a mediator of vaccine-induced protection for influenza B. Clinical Infectious Diseases. 2018 Sep 8;68(10):1713-7
Do Neutralizing Antibodies Fully Mediate the Vaccine Efficacy of mRNA-1273 Against COVID-19?

- Perfect mediation through cID50 titer would be reflected by VE = 0% for vaccine recipients with undetectable cID50 titer
 - Point estimate of VE = 51% at undetectable Day 57 cID50 titer, implying imperfect mediation
 - Yet the wide confidence interval around 51% (−51% to 83%) leaves open the possibility that full mediation occurred
 - Alternatively, additional markers are needed to mediate 100% of the vaccine efficacy
Do Neutralizing Antibodies Fully Mediate the Vaccine Efficacy of mRNA-1273 Against COVID-19?

<table>
<thead>
<tr>
<th>Potential Additional Markers Mediating Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralization as a biological function could be a perfect mediator, but the cID50 titer marker was not sensitive to detect the lowest levels of neutralization activity that mediated partial efficacy. Design a more sensitive neutralization marker?</td>
</tr>
<tr>
<td>Other immunological functions</td>
</tr>
<tr>
<td>Markers not fully measured in serum (e.g., mucosal markers)</td>
</tr>
<tr>
<td>Anamnestic responses not fully represented by a single time point measurement</td>
</tr>
</tbody>
</table>
Day 29 Markers May Be Advantageous as an Immune Marker Surrogate Endpoint

- The article assessed correlates for per-protocol recipients of both doses
- For this population, the data suggest that Day 29 markers are at least as strong as immune correlates as Day 57 markers
 - If confirmed, could lead to a more practical immune marker surrogate endpoint than a Day 57 marker
 - Hence speedier immunogenicity trials, as it would not be necessary to bring participants back for a Day 57 visit
Limitations / Caveats

- **Scope limits:** This study assessed early binding and neutralizing antibody markers as correlates for symptomatic infection (COVID-19) over 3-4 months, for viruses similar to the vaccine strain
 - Other markers of interest:
 - IgG subclasses, Fc effector functions, T cells, innate immunity, etc.
 - Other study endpoints of interest:
 - Asymptomatic infection, Infection, Severe COVID-19, Viral load in nasal swabs
 - Other SARS-CoV-2 strains of interest:
 - VoCs such as delta
 - Other periods of follow-up
 - Longer term for antibody markers and endpoint events
Epistemological limits

- Phase 3 trials can assess statistical CoPs but cannot prove mechanistic CoPs given limited experimental control and the reliance on causal assumptions that cannot be fully empirically verified.
- Yet if an immune marker is a mechanistic CoP, then a certain set of statistical results in Phase 3 trials is expected.
 - The COVE trial results are meeting this expectation.
- Evidence from other studies, especially vaccine challenge and passive antibody transfer challenge studies, may build a case for mechanism.
 - E.g., Corbett, Nason, Seder et al. (2021, Science)
What Types of Immunobridges are Ready?

New population same vaccine: Adults to children

Immunodeficient to Immunocompromised

New vaccine:

Change the dose
Add or change vaccine strain
Add a boost
De novo approval of a vaccine in the same class
De novo approval of a vaccine in a new class

New SARS-CoV-2 variants

Short bridges
Long bridges