Current understanding of mechanisms of vaccine-induced protection Florian Krammer Mount Sinai Professor in Vaccinology Icahn School of Medicine at Mount Sinai WHO meeting on COVID vaccines research August 13th, 2020 # Infection-induced immunity + all other nonstructural proteins likely some intra-host sequence diversity potentially longer presence of antigen systemic immunity mucosal immunity # Vaccine-induced immunity *except inactivated vaccines one consensus spike systemic immunity # Antibody based immunity - Antibodies neutralize SARS-CoV-2 - Antibodies may protect through Fc-dependent effector functions - mAb prophylactics and therapeutics work! NHP are protected from challenge by passive transfer of antibody in a dose dependent manner McMahan et al., Nature 2021 # From a 'global' perspective, antibody levels correlate with vaccine efficacy ## Antibodies do seem to be a correlate of protection at an individual level as well | COVE | Tertile [†] | No. cases / | Attack | Haz. | Ratio | P-value | Overall P- | Overall q- | Overall | |------------------------|----------------------|--------------------------|--------|----------|--------------|-----------|------------|------------|---------| | Immunologic Marker |] | No. at-risk [§] | rate | Pt. Est. | 95% CI | (2-sided) | value | value† | FWER | | Anti Spike IgG (IU/ml) | Low | 25/4,573 | 0.0055 | 1 | N/A | N/A | 0.006 | 0.014 | 0.010 | | | Medium | 14/4,804 | 0.0029 | 0.45 | (0.20, 1.01) | 0.053 | | | | | | High | 8/4,687 | 0.0017 | 0.23 | (0.09, 0.60) | 0.002 | | | | | Anti RBD IgG (IU/ml) | Low | 25/4,620 | 0.0054 | 1 | N/A | N/A | 0.009 | 0.014 | 0.014 | | | Medium | 13/4,745 | 0.0027 | 0.45 | (0.20, 1.01) | 0.052 | | | | | | High | 9/4,699 | 0.0019 | 0.28 | (0.12, 0.67) | 0.004 | | | | | Pseudovirus-nAb cID50 | Low | 21/4,727 | 0.0044 | 1 | N/A | N/A | 0.052 | 0.042 | 0.054 | | | Medium | 18/4,681 | 0.0038 | 0.82 | (0.39, 1.72) | 0.599 | | | | | | High | 8/4,656 | 0.0017 | 0.31 | (0.12, 0.80) | 0.016 | | | | | Pseudovirus-nAb cID80 | Low | 20/4,742 | 0.0042 | 1 | N/A | N/A | 0.012 | 0.014 | 0.015 | | | Medium | 22/4,715 | 0.0047 | 1.00 | (0.49, 2.03) | 1.000 | | | | | | High | 5/4,607 | 0.0011 | 0.20 | (0.07, 0.61) | 0.004 | | | | | Placebo | | 646/13,758 | 0.0470 | | | | | | | ### T cell based immunity Vaccination induces strong CD4+ and somewhat lower CD8+ T-cell responses with most currently used vaccines ### Depletion of CD8 T-cells in NHPs with low antibody titers facilitates breakthrough infections McMahan et al., Nature 2021 ### T cell based immunity CD4+ and CD8+ T-cell responses in naive and recovered indiviuals post mRNA vaccination # Mucosal immunity Krammer, Nature, 2020 ### Mucosal immunity Krammer, Nature, 2020 #### Spike IgG in saliva Gommerman lab https://www.medrxiv.org/content/1 0.1101/2021.08.01.21261297v1.full. pdf ### **Mucosal immunity** | Table 1 Overview of NHP results | | | | | | | | | | |---|--|---|--------------------------------|--|------------------------------|---|--|---|------------------------| | Company
(ref.) | Vaccine
candidate
(type) | Dose range
(route) | Neut. titre
after prime | Neut. titre
after boost | T cell
response | Challenge dose
(route) | URT
protection | LRT
protection | Species | | Sinovac ³⁴ | PiCoVacc
(inactivated virion
+ aluminium
hydroxide) | 3–6 µg (i.m.) | None ^a | 1:10 range ^a after
first boost;
1:50 range ^a after
second boost | ND | 10 ⁶ TCID ₅₀ (i.t.) | Partial ^b | Partial
(low dose) ^b
Complete
(high dose) | Rhesus
macaques | | Beijing
Institute of
Biological
Products ³³ | BBIBP-CorV
(inactivated virion
+ aluminium
hydroxide) | 4–8 µg (i.m.) | 1:100 range ^a | 1:200 range ^a | ND | 10 ⁶ TCID ₅₀ (i.t.) | Partial ^b | Complete ^b | Cynomolgus
macaques | | AstraZeneca ⁴⁹ | ChAdOxnCoV-19
(non-replicating
AdV) | 2.4×10 ¹⁰ VP;
1× or 2× (i.m.) | 1:5-1:40
range ^a | 1:10-1:160 range ^a | Yes | 2.6×10 ⁶ TCID ₅₀
(i.t., oral, i.n.,
ocular) | None (1×)°
None (2×)° | Partial (1×)°
Complete (2×)° | Rhesus
macaques | | Janssen ⁴¹ | Ad26COVS1
(non-replicating
AdV) | 1×10 ¹¹ VP
(i.m.) | 1:100 range ^d | NA | Low | 10 ⁵ TCID ₅₀
(i.n, i.t.) | Complete
in S.PP
group° | Complete in
S.PP group ^c | Rhesus
macaques | | Moderna ⁵⁷ | mRNA-1273
(mRNA via LNPs) | 2×10-100 μg
(i.m.) | ND° | 1:501–1:3,481
range ^d | Yes,
CD4, T _{FH} | 7.6 × 10 ⁵ TCID ₅₀
(i.n., i.t.) | None
(10 µg)°
Partial
(100 µg)° | Partial (10 µg)°
Complete
(100 µg)° | Rhesus
macaques | | Novavax ⁷⁹ | NVX CoV2373
(spike protein +
Matrix-M) | 2×2.5-25 µg | Not reported | 17,920-23,040
range ^a | ND | 10 ⁴ plaque-
forming
units (i.n., i.t.) | Partial
(low dose)°
Complete
(higher
doses)° | Complete ^c | Cynomolgus
macaques | #### Persistence of immune responses **NIAID PARIS New York cohort** Moderna/Pfizer vaccinated Provided by Dr. Viviana Simon ### Factors that may negatively impact on protection from variants - Partial escape from neutralizing antibodies - Through mutation that decrease antibody affinity for spike - Through mutations that increase affinity of spike for ACE2 - Through mutations that increase/alter fusogenicity - Partial escape from T-cell responses - Higher replication capacity - Shorter incubation time - Exposure to higher viral loads - Waning of IgG on mucosal surfaces (protection from infection) - Waning of immune responses in general (protection from illness) ### (Many) remaining questions - What is the absolute correlate of protection for antibody responses (how high does the titer need to be) for protection from - Infection - Illness - Severe illness - What is the role of the anamnestic response (T-cells, memory B-cells) and to which degree is that role influenced by shorter incubation times (e.g. for B.1.617.2/Delta) - What is the contribution of vaccine induced CD4+ and CD8+ T-cells in protection from - Infection - Illness - Severe Illness - How much difference in these mechanisms is there between vaccines and vaccine platforms? ### **Acknowledgements** florian.krammer@mssm.edu http://labs.icahn.mssm.edu/krammerlab/ Twitter: @florian_krammer Thank you to all the study participants! <u>Department of Microbiology/</u> <u>Icahn School of Medicine at Mount Sinai</u> (Mount Sinai Hospital) Peter Palese PARIS and SPARTA teams!!! **John Kubale and Aubree Gordon** <u>Carlos Cordon-Cardo</u> <u>Adolfo Firpo</u> <u>Rao Mendu</u> (Mount Sinai Hospital) #### **Viviana Simon** Komal Srivastava, Charles Gleason and the Personalized Virology Initiative Harm van Bakel (ISMMS) Mia Sordillo David Reich Judy Aberg (Mount Sinai Hospital) **Kantaro** Adolfo García-Sastre Lisa Miorin Teresa Aydillo **Tom Moran** <u>Katherine Kedzierska (U Melbourne)</u> <u>Jussi Hepojoki (U Helsinki)</u> Olli Vapalahti (U Helsinki)