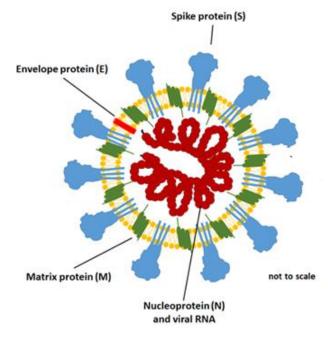
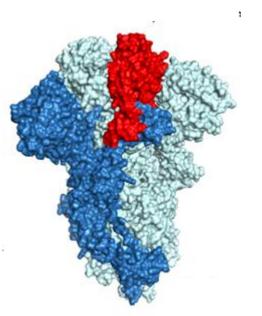
Current understanding of mechanisms of vaccine-induced protection

Florian Krammer


Mount Sinai Professor in Vaccinology

Icahn School of Medicine at Mount Sinai

WHO meeting on COVID vaccines research
August 13th, 2020

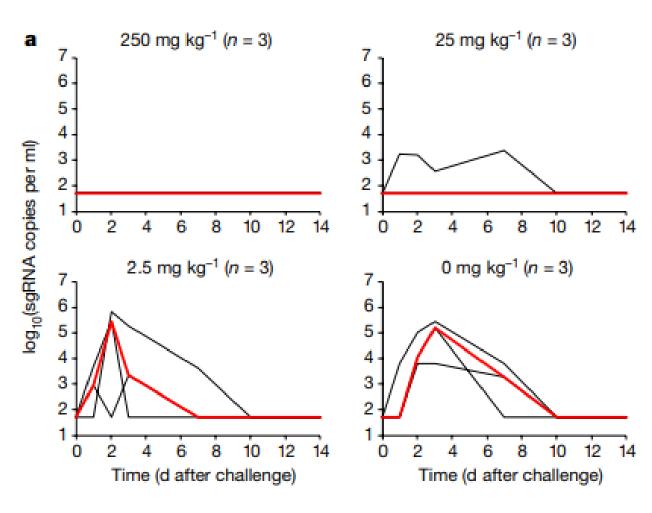

Infection-induced immunity

+ all other nonstructural proteins likely some intra-host sequence diversity potentially longer presence of antigen

systemic immunity mucosal immunity

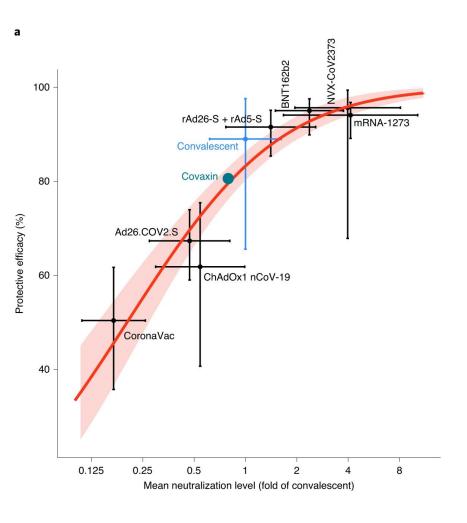
Vaccine-induced immunity

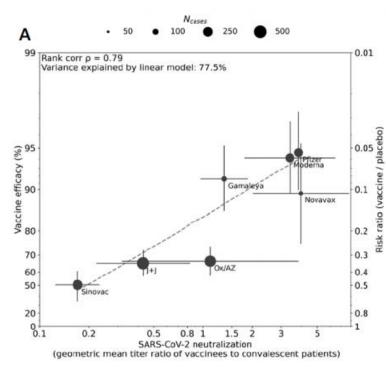
*except inactivated vaccines

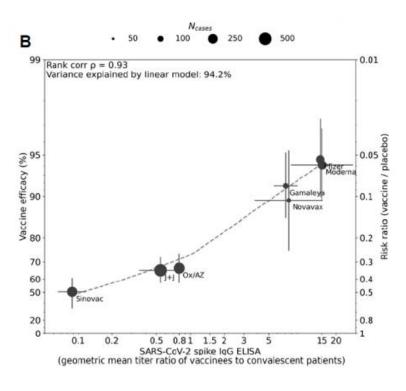

one consensus spike

systemic immunity

Antibody based immunity

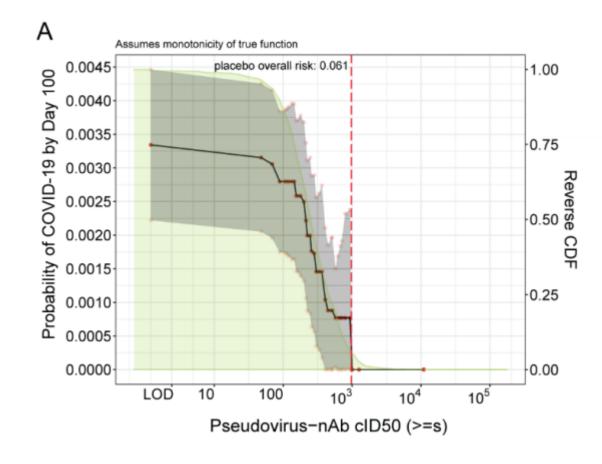

- Antibodies neutralize SARS-CoV-2
- Antibodies may protect through Fc-dependent effector functions
- mAb prophylactics and therapeutics work!


NHP are protected from challenge by passive transfer of antibody in a dose dependent manner

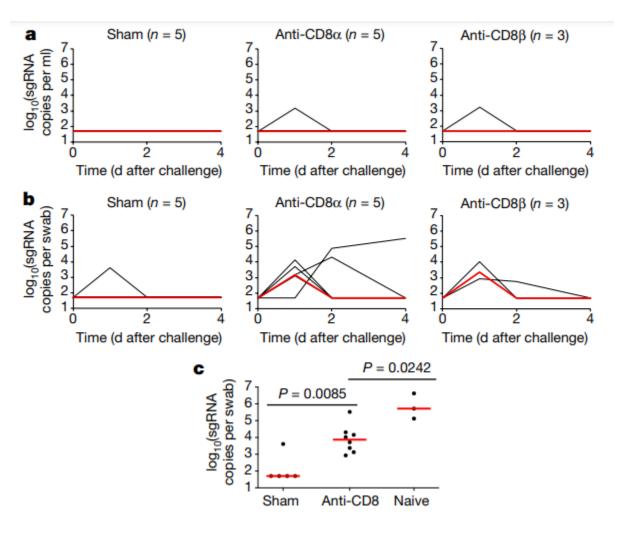


McMahan et al., Nature 2021

From a 'global' perspective, antibody levels correlate with vaccine efficacy

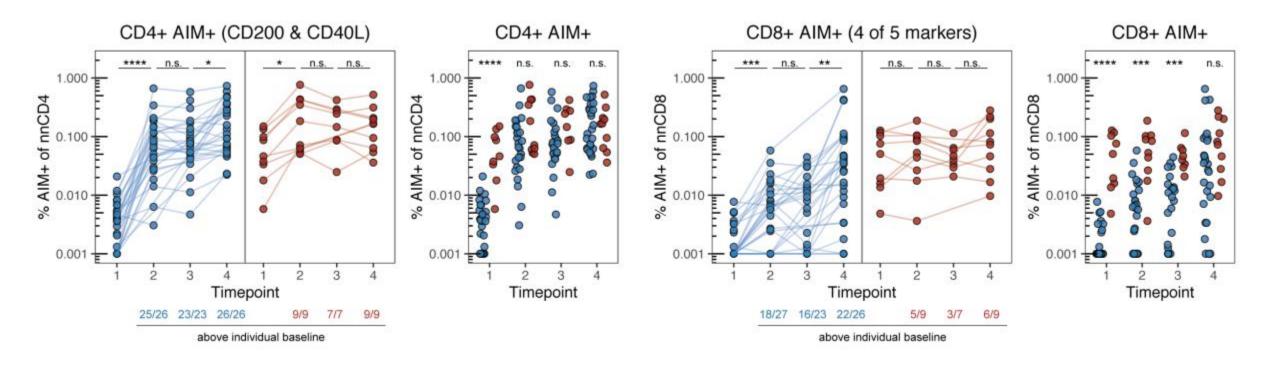


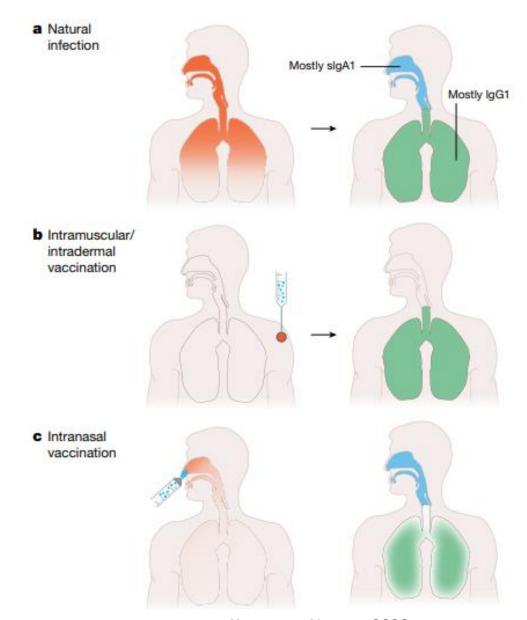
Antibodies do seem to be a correlate of protection at an individual level as well


COVE	Tertile [†]	No. cases /	Attack	Haz.	Ratio	P-value	Overall P-	Overall q-	Overall
Immunologic Marker]	No. at-risk [§]	rate	Pt. Est.	95% CI	(2-sided)	value	value†	FWER
Anti Spike IgG (IU/ml)	Low	25/4,573	0.0055	1	N/A	N/A	0.006	0.014	0.010
	Medium	14/4,804	0.0029	0.45	(0.20, 1.01)	0.053			
	High	8/4,687	0.0017	0.23	(0.09, 0.60)	0.002			
Anti RBD IgG (IU/ml)	Low	25/4,620	0.0054	1	N/A	N/A	0.009	0.014	0.014
	Medium	13/4,745	0.0027	0.45	(0.20, 1.01)	0.052			
	High	9/4,699	0.0019	0.28	(0.12, 0.67)	0.004			
Pseudovirus-nAb cID50	Low	21/4,727	0.0044	1	N/A	N/A	0.052	0.042	0.054
	Medium	18/4,681	0.0038	0.82	(0.39, 1.72)	0.599			
	High	8/4,656	0.0017	0.31	(0.12, 0.80)	0.016			
Pseudovirus-nAb cID80	Low	20/4,742	0.0042	1	N/A	N/A	0.012	0.014	0.015
	Medium	22/4,715	0.0047	1.00	(0.49, 2.03)	1.000			
	High	5/4,607	0.0011	0.20	(0.07, 0.61)	0.004			
Placebo		646/13,758	0.0470						

T cell based immunity

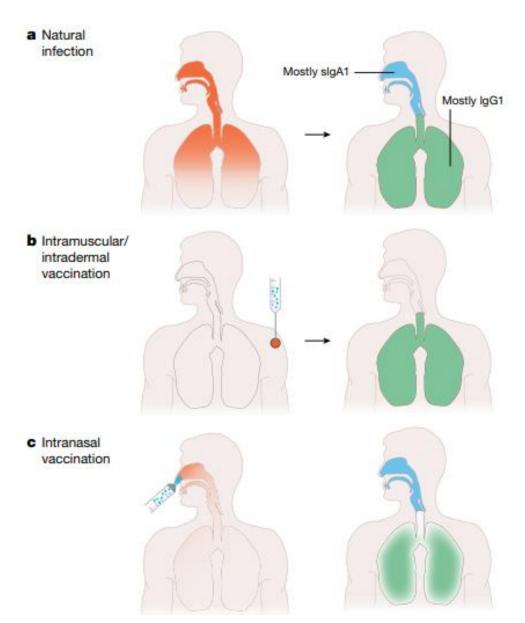
Vaccination induces strong
 CD4+ and somewhat lower
 CD8+ T-cell responses with
 most currently used vaccines


Depletion of CD8 T-cells in NHPs with low antibody titers facilitates breakthrough infections

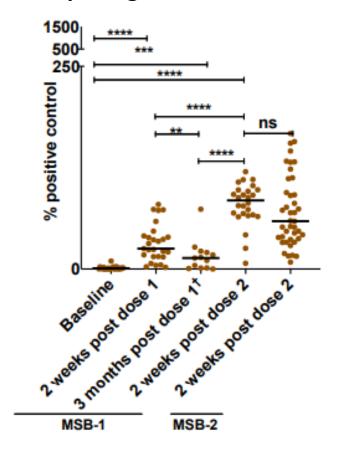

McMahan et al., Nature 2021

T cell based immunity

CD4+ and CD8+ T-cell responses in naive and recovered indiviuals post mRNA vaccination



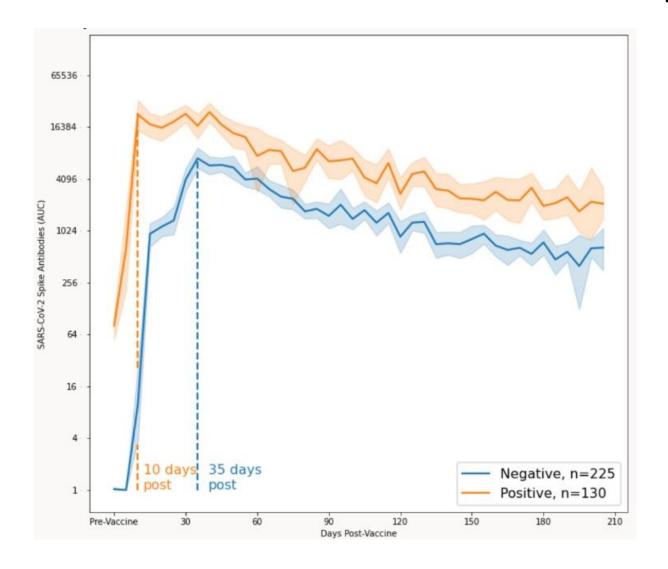
Mucosal immunity


Krammer, Nature, 2020

Mucosal immunity

Krammer, Nature, 2020

Spike IgG in saliva



Gommerman lab https://www.medrxiv.org/content/1 0.1101/2021.08.01.21261297v1.full. pdf

Mucosal immunity

Table 1 Overview of NHP results									
Company (ref.)	Vaccine candidate (type)	Dose range (route)	Neut. titre after prime	Neut. titre after boost	T cell response	Challenge dose (route)	URT protection	LRT protection	Species
Sinovac ³⁴	PiCoVacc (inactivated virion + aluminium hydroxide)	3–6 µg (i.m.)	None ^a	1:10 range ^a after first boost; 1:50 range ^a after second boost	ND	10 ⁶ TCID ₅₀ (i.t.)	Partial ^b	Partial (low dose) ^b Complete (high dose)	Rhesus macaques
Beijing Institute of Biological Products ³³	BBIBP-CorV (inactivated virion + aluminium hydroxide)	4–8 µg (i.m.)	1:100 range ^a	1:200 range ^a	ND	10 ⁶ TCID ₅₀ (i.t.)	Partial ^b	Complete ^b	Cynomolgus macaques
AstraZeneca ⁴⁹	ChAdOxnCoV-19 (non-replicating AdV)	2.4×10 ¹⁰ VP; 1× or 2× (i.m.)	1:5-1:40 range ^a	1:10-1:160 range ^a	Yes	2.6×10 ⁶ TCID ₅₀ (i.t., oral, i.n., ocular)	None (1×)° None (2×)°	Partial (1×)° Complete (2×)°	Rhesus macaques
Janssen ⁴¹	Ad26COVS1 (non-replicating AdV)	1×10 ¹¹ VP (i.m.)	1:100 range ^d	NA	Low	10 ⁵ TCID ₅₀ (i.n, i.t.)	Complete in S.PP group°	Complete in S.PP group ^c	Rhesus macaques
Moderna ⁵⁷	mRNA-1273 (mRNA via LNPs)	2×10-100 μg (i.m.)	ND°	1:501–1:3,481 range ^d	Yes, CD4, T _{FH}	7.6 × 10 ⁵ TCID ₅₀ (i.n., i.t.)	None (10 µg)° Partial (100 µg)°	Partial (10 µg)° Complete (100 µg)°	Rhesus macaques
Novavax ⁷⁹	NVX CoV2373 (spike protein + Matrix-M)	2×2.5-25 µg	Not reported	17,920-23,040 range ^a	ND	10 ⁴ plaque- forming units (i.n., i.t.)	Partial (low dose)° Complete (higher doses)°	Complete ^c	Cynomolgus macaques

Persistence of immune responses

NIAID PARIS New York cohort

Moderna/Pfizer vaccinated

Provided by Dr. Viviana Simon

Factors that may negatively impact on protection from variants

- Partial escape from neutralizing antibodies
 - Through mutation that decrease antibody affinity for spike
 - Through mutations that increase affinity of spike for ACE2
 - Through mutations that increase/alter fusogenicity
- Partial escape from T-cell responses
- Higher replication capacity
- Shorter incubation time
- Exposure to higher viral loads
- Waning of IgG on mucosal surfaces (protection from infection)
- Waning of immune responses in general (protection from illness)

(Many) remaining questions

- What is the absolute correlate of protection for antibody responses (how high does the titer need to be) for protection from
 - Infection
 - Illness
 - Severe illness
- What is the role of the anamnestic response (T-cells, memory B-cells) and to which degree is that role influenced by shorter incubation times (e.g. for B.1.617.2/Delta)
- What is the contribution of vaccine induced CD4+ and CD8+ T-cells in protection from
 - Infection
 - Illness
 - Severe Illness
- How much difference in these mechanisms is there between vaccines and vaccine platforms?

Acknowledgements

florian.krammer@mssm.edu

http://labs.icahn.mssm.edu/krammerlab/

Twitter: @florian_krammer

Thank you to all the study participants!

<u>Department of Microbiology/</u>
<u>Icahn School of Medicine at Mount Sinai</u> (Mount Sinai Hospital)

Peter Palese

PARIS and SPARTA teams!!!

John Kubale and Aubree Gordon

<u>Carlos Cordon-Cardo</u>
<u>Adolfo Firpo</u>
<u>Rao Mendu</u>
(Mount Sinai Hospital)

Viviana Simon

Komal Srivastava, Charles Gleason and the Personalized Virology
Initiative

Harm van Bakel (ISMMS)

Mia Sordillo
David Reich
Judy Aberg
(Mount Sinai Hospital)

Kantaro

Adolfo García-Sastre
Lisa Miorin
Teresa Aydillo

Tom Moran

<u>Katherine Kedzierska (U Melbourne)</u>
<u>Jussi Hepojoki (U Helsinki)</u>
Olli Vapalahti (U Helsinki)