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the COVID-19 pandemic by uniting established population cohorts and
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Randomized trials of COVID-19 vaccines

the NEW ENGLAND Safety and efficacy of the ChAdOx1 nCoV-19 vaccine 3@"& ®
J OURNAL of MEDICINE (AZD1222) against SARS-CoV-2: an interim analysis of

four randomised controlled trials in Brazil, South Africa,
ESTABLISHED IN 1812 DECEMEBER 31, 2020 VOL. 383 NO. 27
and the UK

Merryn Voysey*, Sue Ann Costa Clemens*, Shabir A Madhi*, Lily Y Weckx*, Pedro M Folegatti®, Parvinder K Aley, Brian Angus, Vicky L Baillie, m
1d- V 1 Shaun L Barnabas, Qasim E Bhorat, Sagida Bibi, Carmen Briner, Paola Cicconi, Andrea M Collins, Rachel Colin-Jones, Clare L Cutland,
Saféty and Eﬁicacy Of the BNT162b2 mRNA COVld 19 accine Thomas C Darton, Keertan Dheda, Christopher ] A Duncan, Katherine RW Emary, Katie | Ewer, Lee Fairlie, Saul N Faust, Shuo Feng,
Fernando P. Polack, M.D., Stephen J. Thomas, M.D., Nicholas Kitchin, M.D., Judith Absalon, M.D., E””IEMLF;:E’;&' Ad”:; Fm?'m;”utﬁ”ﬂsmanbcat_ﬁjrmim ?re'_m' ggftﬂp;em G';ee%PGL:Tt:eat?"(cathz”neH”'I"(Heien Tfi rfnLH]rSEh'
. - ) , o usanne odgson, Alane lzu, Susan Jackson, Daniel Jenkin, Carina CD Joe, Simon Kerridge, Anthonet Koen, Gaurav Kwatra, Rajeka Lazarus,
Ale]ar]1dra (Jurtmar?, M.D, Ste.p.he.lj Lockhi]r.t,.D.M.,JohnhL. Pirez, M.D., Gt)ﬁzah) P.ere_z M arl:, M.D., Alison M Lawrie, Alice Lelliott, Vincenzo Libri, PatrickJ Lillie, Raburn Mallory, AnaV A Mendes, Eveline P Milan, Angela M Minassian,

B Edson D. Moreira, M.D., Cristiano Zerbini, M'D"_ Ruth Bailey, B.Sc., Kena A. Sw‘m\”on'_P '_D" Alastair McGregor, Hazel Morrison, Yama F Mujadidi, Anusha Nana, Peter ] O'Reilly, Sherman D Padayachee, Ana Pittella, Emma Plested,
Satrajit Roychoudhury, Ph.D., Kenneth KO“_r)" Ph.D., E'”B Li, Ph'D_" Warren V. Kalina, Ph.D., David Coope_r, Ph.D.,  katrinam Pollock, Maheshi N Ramasamy, Sarah Rhead Alexandre V Schwarzbold, Nisha Singh, Andrew Smith, Rinn Song, Matthew D Snape,
Robert W. Ff9r1ik. Jr., M.D., Laura L. Hammitt, M.D., Ozlem Tureci, M.D,, Ha}*lene Nell, M.D., Axel Schaefer, M.D., Edvardo Sprinz, Rebecca K Sutherdand, Richard Tarrant, Emma C Thomson, M Estée Tardk, Mark Toshner, David P Turner, Johan Vekemans,

Serhat Unal, M.D., Dina B. Tresnan, D.V.M., Ph.D., Susan Mather, M.D., Philip R. Dormitzer, M.D., Ph.D., Tonya L Villafana, Marion E EWatson, Christopher ] Williams, Alexander D Douglas*, AdrianV S Hill*, Teresa Lambe*, Sarah C Gilbert*,

Ugur Sahin, M.D., Kathrin U. Jansen, Ph.D., and William C. Gruber, M.D., for the C4591001 Clinical Trial Group®  Andrew] Pollard* on behalf of the Oxford COVID Vaccine Trial Groupt

ABSTRACT Summary \

Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if  Lancet 2021;397: 99-111
deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and  published online
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Among 10 cases of severe Covid-19 with onset after the From 21 days after first dose, there were ten cases
first dose, 9 occurred in placebo recipientsand 1 in a hospitalised for COVID-19, all in the control arm; two
BNT162b2 recipient classified as severe COVID-19, including one death.



Most studies of effectiveness of COVID-19 vaccines are observational
studies using routine data assembled during the rollout

« Randomized trials provide the best estimates of effectiveness in the real world,
but...

* A host of urgent questions could not be addressed in randomized trials
« Far reaching policy decisions have been made using observational studies

« Such studies aim to make causal inferences about the effects, and comparative effects, of
vaccines and vaccination strategies

 To make causal inferences from observational data, think about the randomized
trial whose result you would like to estimate
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Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available
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Ideally, questions about comparative effectiveness or safety would be answered using an appropriately designed
and conducted randomized experiment. When we cannot conduct a randomized experiment, we analyze observa-
tional data. Causal inference from large observational databases (big data) can be viewed as an attempt to emulate
a randomized experiment—the target experiment or target trial—that would answer the question of interest. When
the goalis to guide decisions among several strategies, causal analyses of observational data need to be evaluated
with respect to how well they emulate a particular target trial. We outline a framework for comparative effectiveness
research using big data that makes the target trial explicit. This framework channels counterfactual theory for com-
paring the effects of sustained treatment strategies, organizes analytic approaches, provides a structured process
for the criticism of observational studies, and helps avoid common methodologic pitfalls.

big data; causal inference; comparative effectiveness research; target trial




Features of randomized trials of vaccine effectiveness

Define eligible participants

Define intervention (vaccination) and comparator (no vaccination / vaccination
against a different infection)

Random assignment to vaccine or comparator

Follow up for vaccine and comparator group starts on the day of assignment

* The calendar date of assignment is comparable for the two groups

Follow up continues for the same time, regardless of intervention group



Confounding

Confounding occurs when there is a common cause (C) of both
vaccination (V)
and
the outcome event (Y)



“Sequential” specification of a target trial
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BNT162b2 mRNA Covid-19 Vaccine
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ABSTRACT

BACKGROUND

As mass vaccination campaigns against coronavirus disease 2019 (Covid-19) com-
mence worldwide, vaccine effectiveness needs to be assessed for a range of out-
comes across diverse populations in a noncontrolled setting. In this study, data
from Israel’s largest health care organization were used to evaluate the effective-
ness of the BNT162b2 mRNA vaccine.

METHODS

All persons who were newly vaccinated during the period from December 20, 2020,
to February 1, 2021, were matched to unvaccinated controls in a 1:1 ratio according
to demographic and clinical characteristics. Study outcomes included documented
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“Sequential” specification of a target trial

* On each day, a vaccinated individual is closely matched to an unvaccinated
(control) individual

e Covariates (matching factors) are measured up to the day of vaccination

Follow up continues until the control individual is vaccinated, at which time follow
up for both individuals is censored.

* Can conduct sensitivity analyses extending follow up (eg for a week) subsequent to vaccination
of the control individual

Control individuals can subsequently be included as a vaccinated individual in a new
pair

Can directly compare cumulative incidence in the two groups, or can adjust for
additional covariates beyond those used for matching.

We waste a lot of data (matching failures, censoring follow up of vaccinated
individuals) but we compare similar individuals over the same time periods



In a public health emergency, we need to
balance the need for rapid estimates of VE with
the need to address potential biases
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Test negative designs

Compare individuals with symptoms who test positive (cases) with those who test negative (controls)

American Joumal of Epidemiology Vol. 184, No. 5
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Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza
Vaccine Effectiveness

Invited Commentary

Invited Commentary: Beware the Test-Negative Design
Sheena G. Sullivan*, Eric J. Tchetgen Tchetgen, and Benjamin J. Cowling

* Correspondence to Dr. Sheena G. Sullivan, WHO Collaberating Centre for Reference and Research on Influenza, Peter Doherty Institute for
Infection and Immunity, Locked Bag 815, Carlton South, VIC 3053, Australia (e-mail: sgsullivan@ucla.edu).

Initially submitted April 22, 2015; accepted for publication January 14, 2016. Daniel Westreich* and Michael G. Hudgens

* Gorrespondence to Dr. Daniel Westreich, Department of Epidemiology, CB #7435, Gillings School of Global Public Health, University of North

Influenza viruses undergo frequent antigenic changes. As a result, the viruses circulating change within and Carolina at Chapel Hil, Chapel Hill, NC 27599 (e-mail: djw @ unc.edu).

between seasons, and the composition of the influenza vaccine is updated annually. Thus, estimation of the vac-

cine’s effectiveness is not constant across seasons. In order to provide annual estimates of the influenza vaccine’s Initially submitted February 26, 2016; accepted for publication April 8, 2016.
effectiveness, health departments have increasingly adopted the “test-negative design,” using enhanced data from
routine surveillance systems. In this design, patients presenting to participating general practitioners with influenza-
like iliness are swabbed for laboratory testing; those testing positive for influenza virus are defined as cases, and

those testing negative form the comparison group. Data on patients’ vaccination histories and confounder profiles Inthis issue of the Jounal, Sullivan et al. (Am J Epidemiol. 2016;184(5):345-353) carefully examine the theoret-
are also collected. Vaccine effectiveness is estimated from the odds ratio comparing the odds of testing positive for ical justification for use of the test-negative design, a common observational study design, in assessing the effec-
influenza among vaccinated patients and unvaccinated patients, adjusting for confounders. The test-negative de- tiveness of influenza vaccination. Using modern causal inference methods (in particular, directed acyclic graphs),
sign is purported to reduce bias associated with confounding by health-care-seeking behavior and misclassification they describe different threats to the validity of inferences drawn about the effect of vaccination from test-negative
of cases. In this paper, we use directed acyclic graphs to characterize potential biases in studies of influenza vac- design studies. These threats include confounding, selection bias, and measurement error in either the exposure or

cine effectiveness using the test-negative design. We show how studies using this design can avoid or minimize

. > ; . " . v Y the outcome. While confounding and measurement error are common in observational studies, the potential for
bias and where bias may be introduced with particular study design variations.

selection bias inherent in the test-negative design brings into question the validity of inferences drawn from such

causal inference; directed acyclic graphs; epidemiologic methods; influenza; observational studies; test-negative studies.

study design; vaccine effectiveness . . . . . . . . . .
¥ an confounding; epidemiologic methods; influenza vaccine; selection bias; test-negative study design




Conditioning on common effects induces
associlations

Selection bias (‘collider bias’)



Academic ability and sporting ability

*In the general population, academic ability
and sporting ability are unrelated

*However, expensive private schools in
England recruit on the basis of both
academic and sporting ability:

Among children at expensive private
schools, the two characteristics are
inversely associated

Academic ability

Sporting ability



Using selected populations for VE research

« Suppose that perceived risk of infection and attitudes to vaccination each
Influence use of a health monitoring app

« Associations between causes of vaccination and risk factors for the target infection
may be distorted among app users

» To correct for this, we would need to measure and adjust for influences on use of
the app



Case-control studies

Useful to think of a cohort study in relation to its target randomized trial

Useful to think of a case-control study in relation to its target cohort

* For example, in the target cohort, potential confounders are measured at the start of
follow up, not when the outcome occurs

Do we need to sample controls?
 Modern computers can handle analyses based on many millions of individuals

 If the whole population is defined, we can sample based on any characteristic, and use
iInverse sampling probability weighting to recreate the result from the whole cohort

« For example, if vaccination is rare we could include all outcome events and all
vaccinated individuals, together with a random sample of other individuals

Main justification for case-control studies may be when the population is not well-
defined, and we sample controls on the basis of geographical or social proximity
to cases.



adjusted Hazard Ratio (aHR)

Include “negative control” outcomes
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Thank you for your attention



