CMC Considerations in Authorizing Use of Variant-Specific Vaccines

December 6, 2021

Robin Levis, Ph.D.
Deputy Director,
Division of Viral Products
Office of Vaccines Research and Review
Center for Biologics Evaluation and Research
U.S. Food and Drug Administration
COVID-19 Vaccines: SARS-CoV-2 Variants of Concern

• Multiple SARS-CoV-2 variants have been identified
• Critical to establish impact of variants on vaccine efficacy, as well as other biologics used to diagnose or treat COVID-19
• Critical to establish pathway for the development and testing of vaccines against variants of concern
 • Non-clinical studies needed?
 • Parallel studies with clinical trial?
 • Manufacturing and quality control
 • Product characterization
 • Potency
 • Clinical endpoints - immunogenicity
• Regulatory pathway to authorize or license use of new vaccines
COVID-19 Variant Virus Vaccines

• Vaccine authorization/licensure is based on validated and well-controlled manufacturing process
 • Well-defined manufacturing process to ensure product quality, consistency, and comparability across multiple facilities
 • Product-related data and testing plans adequate to support the manufacturing process in an appropriate facility, to characterize stability, and to ensure consistency of manufacture
 • Facility data to support product quality
 • Compliance with cGMPs
 • Quality systems in place
COVID-19 Variant Virus Vaccines

• Requirements for the authorization of future SARS-CoV-2 variant vaccines will depend on:
 • New vaccine not previously authorized/licensed
 • Prior authorization of “prototype” strain
 • Platform knowledge
 • Development of variant specific assays and reagents
• The regulatory review of each vaccine will be case-by-case and data-driven
CMC considerations for previously authorized products

• If manufacturing process and facilities are identical, no additional process validation will be required
 • Agreement can be reached with sponsors on what data will be necessary to support consistency of manufacturing of new vaccines
 • Will be at least one full scale batch

• If in-process and final release analytical methods are identical, assays do not have to be re-validated for the manufacture and control of variant virus vaccines
 • The exception is critical assays that are variant specific:
 • Potency assay
 • Identity assay

• Stability data from previously authorized/licensed vaccines using the same platform will be considered as supportive information.
CMC considerations for previously authorized products - characterization

• For all vaccine types:
 • Are there any critical quality attributes impacted by the inclusion of a new spike protein antigen?

• For mRNA vaccines:
 • Is the level of protein expression, as measured in an *in vitro* expression assay, similar to previously authorized vaccines?
 • Is the purity profile of DS/DP impacted by variant sequence?

• For vector-based vaccines:
 • Is the level of protein expression similar to previously authorized vaccines?
CMC considerations for previously authorized products – potency assays

• Potency assays for variant virus vaccines:
 • Require demonstration that the potency assay is specific for the variant.
 • Require characterization of variant specific reagents and controls, including antibody reagents and any variant specific antigens used in an assay

• Identity assays for variant virus vaccines:
 • Require demonstration that the identity assay is capable of distinguishing variant vaccine from prototype or other variants.
Additional consideration for variant vaccines

• Monovalent vs. Bivalent vaccines:
 • Potency assay must measure each component of bivalent (or multivalent) vaccine
 • Identity assay must be able to appropriately distinguish each variant virus type in the final drug product.

• Clinical Assays for Immunogenicity:
 • Adapt assay platforms for use with variant vaccines
 • Need to show specificity of the assays for samples from variants
 • Understanding that the availability of variant specific reagents may be limiting
Acknowledgements

• DVP/OVRR/CBER
 • Jerry Weir
 • Swati Verma
 • Anissa Cheung
 • Xiao Wang
 • Gopa Raychaudhuri
 • Cassandra Overking