

Thanks To Coauthors

Guilhem Faure Feng Zhang

Pascal Mutz Yuri Wolf Eugene Koonin

Monophyletic group (clade) with "good" date-constrained tree

Breaks down trees into groups separated by periods of apparently different substitution rates, likely environmental conditions

Considered all non-segmented RNA viruses with at least ~200 complete genomes.

Consider events at scale of species diversification.

Human pathogenic RNA viruses establish noncompeting lineages by

occupying independent niches

First approach: compare lineage coexistence

Real distribution of isolates

Expected distribution of isolates based on root distances

Enterovirus D

First approach: compare lineage coexistence

Lineages coexist longer than estimated from substitutions alone (no dates)

Second approach: measure coalescence rate

Build simulated trees according to neutral

expectation (Yule-Harding)

Second approach: measure coalescence rate

2+ lineages, other

All but EVC demonstrates reduced coalescence (competition) relative to neutral expectation between linages.

All but MMV demonstrates increased coalescence within lineages.

Only tempo, not the mode, of molecular evolution appears to vary substantially intra- vs. inter-lineage.

Comparison of site density of Multiple Shallow representing best estimate of adaptive sites

Multiple Deep, best estimate of linage-defining sites

All Shallow, unrelated to selection

Site densities are correlated (Pearson). Exception, picornaviruses (RVA/HDV low confidence)

		AS MS	AS MD	MS MD
	RVA	94	-28	-27
	HDV	93	-9	-25
	PeVA	80	-20	9
	EVA	69	-3	2
	EVC	62	61	3
	EVB	81	56	30
	WNV	90	46	46
	EVD	67	52	29
HMPV		94	78	59
	SV	73	50	47
	HCV	87	71	67
(AVHO	83	84	65
	TBEV	44	42	31
	MMV	50	80	41
(CHIKV	80	65	73
Norwalk		89	80	86
	HRV3	93	90	90
	HRSV	83	87	91
	DENV	53	48	78

Environmental change: urbanization and climate change may disrupt niches

Thanks For Listening

Guilhem Faure Feng Zhang

Pascal Mutz Yuri Wolf Eugene Koonin

