Convalescent Plasma: Therapeutic Clarity, Efficacy & Lessons Learned During the SARS-CoV-Pandemic.

Michael J. Joyner, MD

Dept. of Anesthesiology & Perioperative Medicine

Mayo Clinic

@DrMJoyner

https://www.uscovidplasma.org/

Convalescent Plasma (CP): Conceptual Model & Principles

Principles of Antibody
Therapy

- Specificity
- Early Timing
- High Dose

Give enough of the right stuff early

Notable Historic Uses of Antibody TX Against Infectious Diseases

CP Pandemic Timeline – *Highlights 2020-2022*

Outpatient RCTs To Prevent Hospitalization Antivirals, mAbs & CP Comparison

CP & Antibody Therapy for COVID-19 After Two Years: Take Home Messages

- Convalescent Plasma (CP) safety profile similar to FFP
- No evidence of ADE
- High titer CP is effective if used early and especially in patients who don't make endogenous antibodies
- mAbs are safe and effective in preventing hospitalization and in patients who don't make endogenous antibodies – however, mAbs are subject to escape by novel variants
- Very high titer VaxPlasma from donors who have been both vaccinated and infected adapts to and retains efficacy against variants
- High titer CP including VaxPlasma is available worldwide at relatively low cost

CP & The Immune Suppressed: RCT and Cohort Data 0.65 (0.54-0.79)

Hybrid VaxPlasma & Commercial Assays (Roche)

- Triple vaxed donor
- Omicron breakthrough May 2022
- Assay maxes out at 250
- Serial dilutions ~ 25,000
- 100x compared to summer 2020
- Seems to cover/keep up with variants

The results (U/mL) were as follows:

Neat = >250

On board X10 = >2500

X10 = 10*>250 = >2500

X100 = 231*100 = 23,100

X500 = 56.8*500 = 28,400

X1000 = 29.4*1000 = 29,400

The following comment with the result will be as follows:

"A x10 dilution was performed and the result was >2500 U/mL. The laboratory is unable to perform additional dilutions to achieve an absolute concentration. No minimum antibody level or threshold has been established to indicate long-term protective immunity against re-infection."

Hybrid (BA1 Breakthrough) VaxPlasma Neutralizes BA4/5

Thinking About Year 3 & Next Time

- VaxPlasma for smoldering cases in the immune suppressed DO NOW
- Readiness for Next Time
 - CP will always be the 1st Ab available
 - Bioplausible & totality of data perspective needed
 - Blood banking preparedness
 - Community engagement & motivated donors
 - Adaptable assay system for model organisms that can be scaled quickly for a specific pathogen
 - Worldwide access!
- High Titer (*locally sourced ?*) Early Use, Early Use, Early Use plus High Risk
- Expanded access plus pre-designed adaptive trials
- Templates for trials, compliance & funding
- Integrated approach to data/evidence EBM and related methodology can be hammers and pandemics are not always nails....

Backup

High Titer CP Used Early "Works"

Mortality rates among randomized clinical trials of optimal use convalescent plasma therapy for COVID-19

		Nlan							
	Non-				Non-		Mechanical		Time to transfusion
Study	Survivor	Survivor	Mortality	Survivor	Survivor	Mortality	ventilation (%)	Titer	(days)
Avendaño-Solà et al.	172	7	4%	157	14	8%	0%	High titer	1 (admission)
Bar et al.	38	2	5%	29	10	26%	0%	High titer	1 (admission)
Bennett-Guerrero et al.	43	16	27%	10	5	33%	19%	High titer	4 (admission)
Devos et al.	258	20	7%	138	7	4%	0%	High titer	7 (symptoms)
Gharbharan et al.	37	6	14%	32	11	26%	12%	High titer	2 (admission)
Korper et al.	42	11	21%	35	17	33%	30%	High titer	2 (admission)
Libster et al.	78	2	3%	76	4	5%	0%	High titer	3 (symptoms)
Menichetti F et al.	217	14	6%	221	19	8%	0%	High titer	7 (symptoms)
O'Donnell et al.	131	19	13%	55	18	25%	11%	High titer	9 (symptoms)
Ortigoza et al. (No corticosteroids subgroup)	85	9	10%	69	18	21%	0%	High titer	1 (admission)
Simonovich et al.	203	25	11%	93	12	11%	0%	High titer	8 (symptoms)
Sullivan et al.	592	0	0%	586	3	1%	0%	High titer	6 (symptoms)
The CONCOR-1 Study Group (high titer subgroup)	268	75	22%	133	40	23%	0%	High titer	5 (diagnosis)
The RECOVERY Collaborative Group (No corticosteroids subgroup)	317	74	19%	313	100	24%	5%	High Titer	2 (admission)
The REMAP-CAP Investigators (Moderate state subgroup)	54	8	13%	17	7	29%	0%	High titer	2 (admission)
The SIREN-C3PO Investigators	252	5	2%	253	1	0%	0%	Hiah titer	4 (symptoms)
Overall	2787	293	9.5%	2217	286	11.4%			

 $[\]chi^2 = 5.44$, P = 0.019; 16.7% relative mortality reduction associated with convalescent plasma therapy

CP Pandemic Timeline – *Highlights 2020-2022*

Joyner et al NEJM Casadevall et al eLife Thompson et al JAMA Onc Sullivan et al NEJM