Understanding T cell immunity to COVID-19 and relationships to vaccine correlates and mechanisms of protection

Shane Crotty

Center for Infectious Disease and Vaccine Research
La Jolla Institute for Immunology (LJI), CA, USA
University of California, San Diego (UCSD) School of Medicine

WHO Correlates Meeting. Sept 2021
The simplest option for any vaccine development is high level, long lasting, neutralizing antibodies.

Various lines of evidence point to substantial protective contributions of T cells against COVID-19.

It is quite reasonable to consider that hospitalization-level COVID-19 is prevented by any decent combination of antibody, CD4, and CD8 T cells.

T cells can be measured as potential correlates of immunity, but it has not been done so to date for COVID-19 vaccines.
What are mechanisms of protective immunity against COVID-19?

The simplest option for any vaccine development is high level, long lasting, neutralizing antibodies.

➢ This virus is clearly susceptible to neutralizing antibodies.

➢ 26 of 28 previous licensed human vaccines have antibodies as the mechanism or correlate of immunity.

➢ Antibodies are the only mechanism that can provide truly sterilizing immunity.

➢ Antibodies are a correlate of CD4s: Neutralizing antibody responses almost always depend on CD4 T cell responses. Thus, antibodies are usually a surrogate marker of vaccine-specific CD4 T cells, at least T_{FH} cells.

Adaptive immunity to SARS-CoV-2 and COVID-19 Cell 2021
The simplest option for any vaccine development is high level, long lasting, neutralizing antibodies.

Various lines of evidence point to substantial protective contributions of T cells against COVID-19.

It is quite reasonable to consider that hospitalization-level COVID is prevented by any decent combination of antibody, CD4, and CD8 T cells.

T cells can be measured as potential correlates of immunity, but it has not been done so to date for COVID-19 vaccines.
Various lines of evidence point to substantial protective contributions of T cells

- T cell responses correlate with better outcomes and lower viral loads in SARS-CoV-2 infection
- CD8 T cells provide control in monkeys
- Regeneron and Lilly outpatient and inpatient monoclonal antibody clinical trials. Modest impact on viral loads
- Agammaglobulinemic and B cell depleted individuals
 - moderately increased risk of hospitalization with COVID-19
 - COVID-19 in ocrelizumab-treated people with MS is predominantly mild
- 1-dose of Moderna or Pfizer vaccine provided substantial protection in the absence of detectable neutralizing antibodies in most individuals
- Kinetics and tissue distribution of COVID-19
It is all a race
A race between the virus and your immune system.
Vaccines get rid of the race. You then have the headstart instead of the virus.
It is all a race
A race between the virus and your immune system.
Vaccines get rid of the race. You then have the headstart instead of the virus.
Evidence of T cell roles in prevention of symptomatic COVID-19

Three recent studies on pre-existing crossreactive memory T cells provide additional evidence of the value of T cell memory against COVID-19

- Weiskopf, Crotty, Sette and colleagues
- Thiel and colleagues
- Maini and colleagues
The simplest option for any vaccine development is high level, long lasting, neutralizing antibodies.

Various lines of evidence point to substantial protective contributions of T cells against COVID-19.

It is quite reasonable to consider that hospitalization-level COVID-19 is prevented by any decent combination of antibody, CD4, and CD8 T cells.

T cells can be measured as potential correlates of immunity, but it has not been done so to date for COVID-19 vaccines.
What are mechanisms of protective immunity against COVID-19?

It is quite reasonable to consider that hospitalization-level COVID-19 is prevented by any decent combination of antibody, CD4, and CD8 T cells.

It is all a race
A race between the virus and your immune system. Vaccines get rid of the race. You then have the headstart instead of the virus.
What are mechanisms of protective immunity against COVID-19?

It is quite reasonable to consider that hospitalization-level COVID-19 is prevented by any decent combination of antibody, CD4, and CD8 T cells.
Vaccine protection against SARS-CoV-2

Protection against Detectable Infection

Protection against Hospitalizations & Deaths

Major

Minor
It is all a race

A race between the virus and your immune system.
Vaccines get rid of the race. You then have the headstart instead of the virus.
What are mechanisms of protective immunity against COVID-19?

It is quite reasonable to consider that hospitalization-level COVID-19 is prevented by any decent combination of antibody, CD4, and CD8 T cells.

Conditions where this may be important:

Natural immunity
- when antibody titers are low

Vaccine-generated immunity (currently used COVID vaccines)
- When antibody titers decline
- Immunocompromised or immunosuppressed individuals
- Different time windows post-vaccination
 - T cell and binding antibodies to RNA vaccines detected faster than neutralizing antibodies
 - Immune memory compartments can have substantially different kinetics
- Neutralizing antibody escape variants (B.1.351 and J&J vaccine example?)

Novel vaccines with T cell dominant mechanisms of action
- T cell only vaccines or CD8 T cell dominant vaccines
- Mucosal vaccines that may have more complex mechanisms of action
It is quite reasonable to consider that hospitalization-level COVID-19 is prevented by any decent combination of antibody, CD4, and CD8 T cells.

Conditions where this may be important:

Natural immunity
- when antibody titers are low

Vaccine-generated immunity (currently used COVID vaccines)
- When antibody titers decline
- Immunocompromised or immunosuppressed individuals
- Different time windows post-vaccination
 - T cell and binding antibodies to RNA vaccines detected faster than neutralizing antibodies
 - Immune memory compartments can have substantially different kinetics
- neutralizing antibody escape variants (B.1.351 and J&J vaccine example?)

Novel vaccines with T cell dominant mechanisms of action
- T cell only vaccines or CD8 T cell dominant vaccines
- Mucosal vaccines that may have more complex mechanisms of action
The simplest option for any vaccine development is high level, long lasting, neutralizing antibodies.

Various lines of evidence point to substantial protective contributions of T cells against COVID-19.

It is quite reasonable to consider that hospitalization-level COVID-19 is prevented by any decent combination of antibody, CD4, and CD8 T cells.

T cells can be measured as potential correlates of immunity, but it has not been done so to date for COVID-19 vaccines.
It is possible to do T cell correlates of protection studies in humans. This is a solved problem. The HIV Vaccine Trials Network (HVTN) has done this for over a decade.

Even when T cells are mechanistically important for protection, evidence lags compared to antibodies because:

- T cell studies are more resource intensive (~30 times)
- T cell assays are more challenging to standardize across labs (live cells)
- The simple passive transfer burden-of-proof available for antibodies is not available
- Complexities of T cell contributions: CD4 T cells, CD8 T cells, subsets, functionalities, tissue location.
Q&A