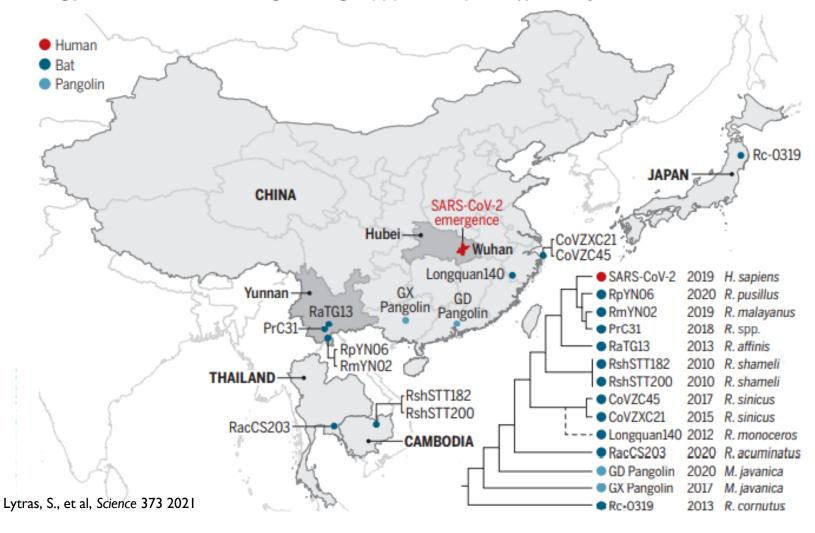
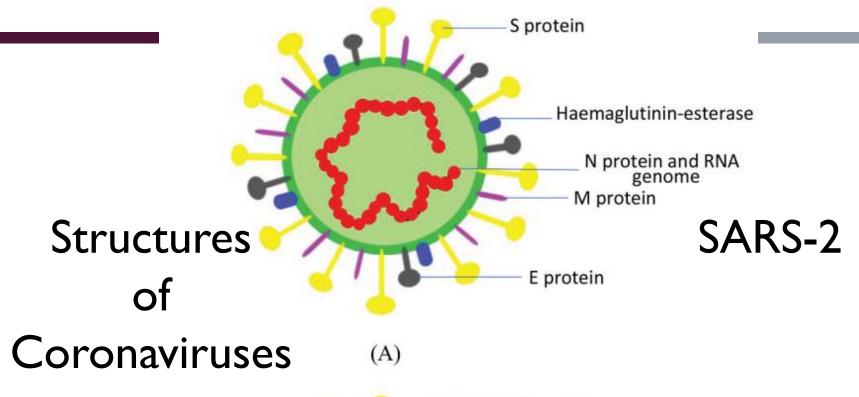


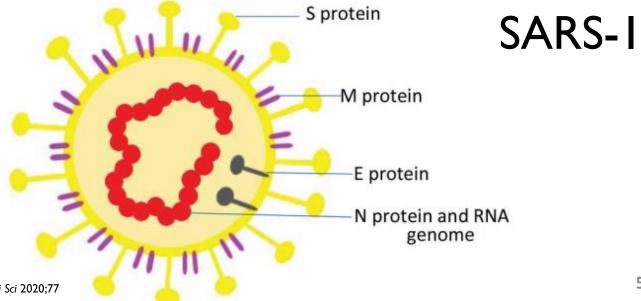
We Need a PANSARBECOVIRUS Vaccine

by Stanley A. Plotkin University of Pennsylvania


WHO 2022 Jan. 24, 2022

Sarbecoviruses

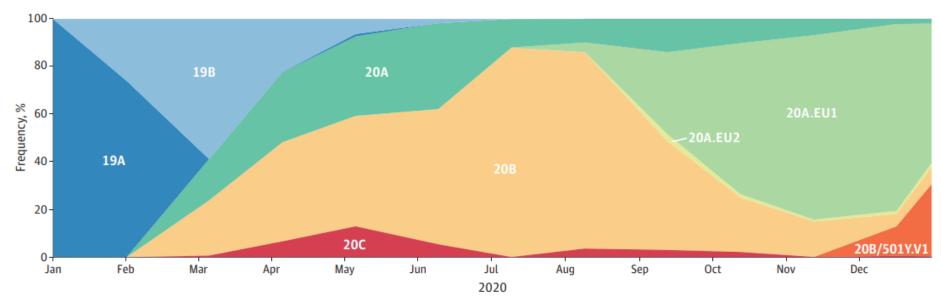

Sarbecoviruses closely related to SARS-CoV-2


Coronaviruses that are evolutionarily closest to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been sampled in China, Cambodia, Japan, and Thailand (5). The phylogenetic tree, inferred from a genomic region minimized for recombination (5), shows sarbecoviruses closely related to SARS-CoV-2. Host species for each virus, horseshoe bat (*Rhinolophus*), human (*Homo sapiens*), and pangolin (*Manis javanica*) and the year of sample collection are shown in the key. Longquan140 is inferred from another genomic region (5) (dashed line). See supplementary table S1 for more details.

Temmam, S., Eloit, M., Nature; In Press

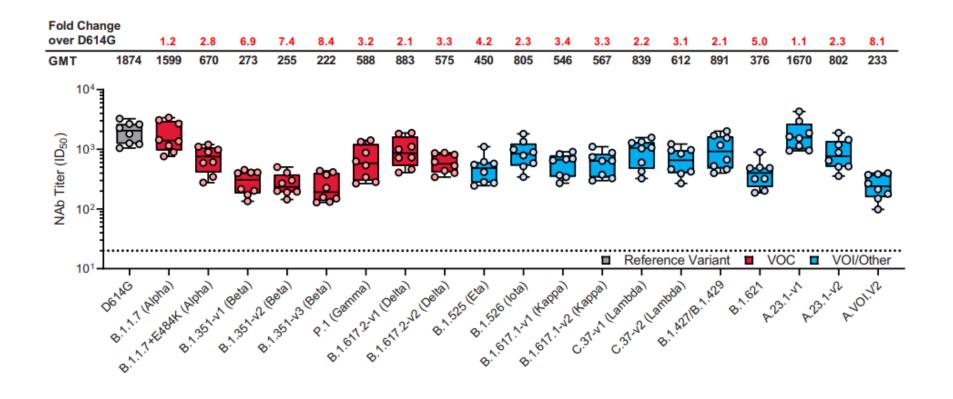
SARS-CoV-2 progenitor bat viruses genetically close to SARS-CoV-2 and able to enter human cells through a human ACE2 pathway have not yet been identified. Here we show that such viruses indeed circulate in cave bats living in the limestone karstic terrain in North Laos, within the Indochinese peninsula. We found that the RBDs of these viruses differ from that of SARS-CoV-2 by only one or two residues at the interface with ACE2, bind more efficiently to the hACE2 protein than the SARS-CoV-2 Wuhan strain.

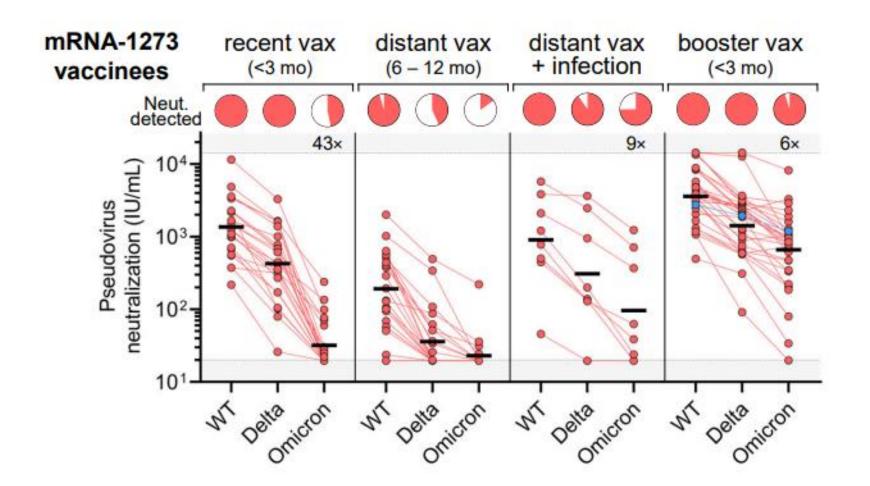
Classification of circulating genetic variants of SARS-CoV-2


Lineage	Label	First detected in	Earliest samples
B.1.1.7	Alpha	United Kingdom	September 2020
B.1.1.7 + E484K	Alpha	United Kingdom	February 2021
B.1.351	Beta	South Africa	May 2020
B.1.1.28.1 (P.1)	Gamma	Brazil	November 2020
B.1.1.28.2 (P.2)	Zeta	Brazil	April 2020
B.1.1.28.3 (P.3)	Theta	Philippines	January 2021
B.1.617.1	Карра	India	October 2020
B.1.617.2	Delta	India	October 2020
B.1.617.3		India	October 2020
B.1.427/B.1.429	Epsilon	USA	March 2020
B.1.525	Eta	Nigeria	December 2020
B.1.526	lota	USA	November 2020
B.1.620		Lithuania Febru	
B.1.621	Colombia Janua		January 2021
B.1.1.318	United Kingdom February 2		February 2021
A.23.1 + E484K		United Kingdom	February 2021
AV.1		United Kingdom	May 2021
C.36.3		Thailand/Egypt	May 2021
C.37	Lambda	Peru	December 2020

Trimpert et al., Sci. Adv. 7 2021

Currently designated variants of concern (VOCs)


WHO Label	Pango Lineage	Earliest Documented Samples	
Alpha	B.1.1.7	United Kingdom Sept. 2020	
Beta	B.1.351	South Africa May 2020	
Gamma	P.1	Brazil Nov. 2020	
Delta	B.1.617.2	India Oct. 2020	
Omicron	B.1.1.529	Multiple Countries Nov. 2021	
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/			


Frequencies of circulating lineages of SARS-CoV-2 over time

Lauring, A., Hodcroft, E., JAMA 2021;325:6

Neutralization of SARS-CoV-2 pseudoviruses in serum samples.

T cell responses to spike only may be insufficient

Article

Cell Reports

Isolation and characterization of cross-neutralizing coronavirus antibodies from COVID-19+ subjects

Authors

Madeleine F. Jennewein, Anna J. MacCamy, Nicholas R. Akins, ..., Mehul S. Suthar, Andrew T. McGuire, Leonidas Stamatatos

Highlights

- Fourteen anti-SARS-CoV-2 neutralizing mAbs isolated from four patients
- Three anti-RBD and one anti-S2 mAb neutralized SARS-CoV-1 and the B.1.351 variant
- Mouse studies show potential protective effect of anti-NTD mAbs

Article

Cell

Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines

In brief

Multivalent sarbecovirus RBD-Nanoparticle vaccines elicit heterotypic protection against sarbecoviruses.

Walls et al., 2021, Cell 184, 5432-5447 October 14, 2021 © 2021 Elsevier Inc. https://doi.org/10.1016/j.cell.2021.09.015

Article

Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses

Kevin O. Saunders,.... Barton F. Haynes Nature. 2021 June; 594(7864): 553–559

"... macaque immunization with a multimeric SARS-CoV-2 receptor binding domain (RBD) nanoparticle adjuvanted with 3M-052/ Alum elicited cross-neutralizing antibody (cross-nAb) responses against batCoVs, SARS-CoV-1, SARS-CoV-2, and SARS-CoV-2 variants B.1.1.7, P.1, and B.1.351."

We Need a Pan Sarbecovirus Vaccine Because:

Variants of SARS-2 beta coronavirus may continue to escape neutralizing antibodies induced by vaccines against prior variants

The reservoir of beta coronaviruses in bats is large and new crossovers to humans is likely

If we prepare now, the time required for large scale vaccine manufacture will be reduced and lives will be saved