WHO (2003) Bentazone in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva, World Health Organization (WHO/SDE/WSH/03.04/77).

12.13 Benzene

Benzene is used principally in the production of other organic chemicals. It is present in petrol, and vehicular emissions constitute the main source of benzene in the environment. Benzene may be introduced into water by industrial effluents and atmospheric pollution.

Guideline value	0.01 mg/litre
Occurrence	Concentrations in drinking-water generally less than 5 µg/litre
Basis of guideline derivation	Robust linear extrapolation model (because of statistical lack of fit of some of the data with the linearized multistage model) applied to leukaemia and lymphomas in female mice and oral cavity squamous cell carcinomas in male rats in a 2-year gavage study in rats and mice
Limit of detection	$0.2\mu\text{g/litre}$ by GC with photoionization detection and confirmation by MS
Treatment achievability	0.01 mg/litre should be achievable using GAC or air stripping
Additional comments	Lower end of estimated range of concentrations in drinking-water corresponding to an upper-bound excess lifetime cancer risk of 10^{-5} ($10-80\mu g$ /litre) corresponds to the estimate derived from data on leukaemia from epidemiological studies involving inhalation exposure, which formed the basis for the previous guideline value. The previous guideline value is therefore retained.

Toxicological review

Acute exposure of humans to high concentrations of benzene primarily affects the central nervous system. At lower concentrations, benzene is toxic to the haematopoietic system, causing a continuum of haematological changes, including leukaemia. Because benzene is carcinogenic to humans, IARC has classified it in Group 1. Haematological abnormalities similar to those observed in humans have been observed in animal species exposed to benzene. In animal studies, benzene was shown to be carcinogenic following both inhalation and ingestion. It induced several types of tumours in both rats and mice in a 2-year carcinogenesis bioassay by gavage in corn oil. Benzene has not been found to be mutagenic in bacterial assays, but it has been shown to cause chromosomal aberrations *in vivo* in a number of species, including humans, and to be positive in the mouse micronucleus test.

History of guideline development

The 1958, 1963 and 1971 WHO *International Standards for Drinking-water* did not refer to benzene. In the first edition of the *Guidelines for Drinking-water Quality*, published in 1984, a health-based guideline value of 0.01 mg/litre was recommended for

12. CHEMICAL FACT SHEETS

benzene based on human leukaemia data from inhalation exposure applied to a linear multistage extrapolation model. The 1993 Guidelines estimated the range of benzene concentrations in drinking-water corresponding to an upper-bound excess lifetime cancer risk of 10^{-5} to be 0.01-0.08 mg/litre based on carcinogenicity in female mice and male rats. As the lower end of this estimate corresponds to the estimate derived from epidemiological data, which formed the basis for the previous guideline value of 0.01 mg/litre associated with a 10^{-5} upper-bound excess lifetime cancer risk, the guideline value of 0.01 mg/litre was retained.

Assessment date

The risk assessment was originally conducted in 1993. The Final Task Force Meeting in 2003 agreed that this risk assessment be brought forward to this edition of the *Guidelines for Drinking-water Quality*.

Principal reference

WHO (2003) Benzene in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva, World Health Organization (WHO/SDE/WSH/03.04/24).

12.14 Boron

Boron compounds are used in the manufacture of glass, soaps and detergents and as flame retardants. The general population obtains the greatest amount of boron through food intake, as it is naturally found in many edible plants. Boron is found naturally in groundwater, but its presence in surface water is frequently a consequence of the discharge of treated sewage effluent, in which it arises from use in some detergents, to surface waters.

Provisional guideline value	0.5 mg/litre The guideline is designated as provisional because it will be difficult to achieve in areas with high natural boron levels with the treatment technology available.
Occurrence	Concentrations vary widely and depend on the surrounding geology and wastewater discharges. For most of the world, the concentration range of boron in drinking-water is judged to be between 0.1 and 0.3 mg/litre.
TDI	0.16 mg/kg of body weight, based on a NOAEL of 9.6 mg/kg of body weight per day for developmental toxicity (decreased fetal body weight in rats) and an uncertainty factor of 60 (10 for interspecies variation and 6 for intraspecies variation)
Limit of detection	0.2 μg/litre by ICP/MS; 6–10 μg/litre by ICP/AES