

Rift Valley fever seroprevalence data from previous surveys in Senegal

Gamou FALL

WHO CC for Arboviruses and Viral Hemorrhagic Fevers

Virology Department

Institut Pasteur de Dakar, Senegal

RVF detection in Senegal

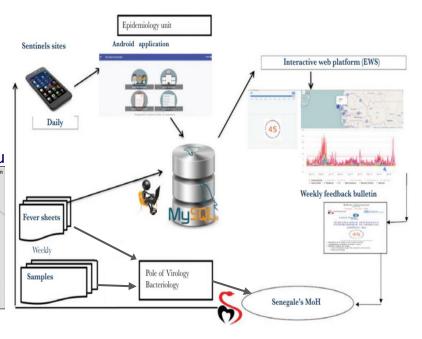
Rift Valley Fever distribution map

Countries reporting endemic disease and substantial outbreaks of RVF
Countries reporting few cases, periodic isolation of virus, or serologic evidence of RVF infection
RVF status unknown

The Phenuiviruses | CEP|

No specific surveillance programs, viral detection through different systems

Yellow Fever Surveillance


VHF cases in Hospitals

Febrile syndrome urveillance in Kedougo

Since 2015, implementation of Sentinel Syndromic Surveillance in Senegal (4S)

RVF detection in Senegal

- Large outbreak in 1987 (about 1500 cases and more than 200 deaths)
- Sporadic cases/minor outbreaks between 2012 and 2024
- 2013-2014 (12 cases, Linguere, Mbour and Kedougou)
- 2020 (9 cases, Matam, Fatick, Richard Toll and Dakar)
- 2022 (4 cases, Podor, Matam and Dakar),

Median age and the sex ratio (M/F):

- 23 years (13 to 32 years) and 1,75 (2013-14)
- 26 years (17–40) years and 3.5 (2020)
- 35 years (19 to 56) and 1 (2022)

Severe symptoms

- Encephalitis 40% and macular retinitis with edema 20% in 2013-14
- No severe symptoms in 2020 and 2022
- No death

Widespread Rift Valley Fever Emergence in Senegal in 2013–2014

Abdourahmane Sow,^{1,2,2,4} Ousmane Faye,¹ Yamar Ba,⁵ Diawo Diallo,⁶ Gamou Fall,¹ Oumar Faye,¹ Ndeye Sakha Bob,¹ Cheikh Loucoubar,¹ Vincent Richard,⁶ Anta Tal Dia,² Mawlouth Diallo,⁵ Denis Malvy,² and Amadou Alpha Sall¹

¹Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Senegal; ²Institut de Santé Publique d'Epidémiologie et de Développement, Centre de Recherche Institut National de la Santé et de la Recherche Médicale Unité 89 F. pidémiologie-Biostatistique, Bordeaux University, France; ³Institut Santé et Développement, Cheikh Anta Diop University, Dakar, Senegal; ⁴West African Health Organization, Bobo-Dioulasso, Burkina Faso; ⁵Medical Entomology Unit, and ⁶Infact National Diseases Epidemiology Unit, Institut Pasteur Dakar, Senegal

LETTER ► Emerg Infect Dis. 2014 Mar;20(3):504–506. doi: 10.3201/eid2003.131174 ☑

Rift Valley Fever in Kedougou, Southeastern Senegal, 2012

Abdourahmane Sow ^{1,2}, <u>Oumar Faye</u> ^{1,2}, <u>Ousmane Faye</u> ^{1,2}, <u>Diawo Diallo</u> ^{1,2}, <u>Bakary D Sadio</u> ^{1,2}, <u>Scott C Weaver</u> ^{1,2}, <u>Mawlouth Diallo</u> ^{1,2}, <u>Amadou A Sall</u> ^{1,2,89}

Author information
 Article notes
 Copyright and License information
 PMCID: PMC3944877
 PMID: 24565408

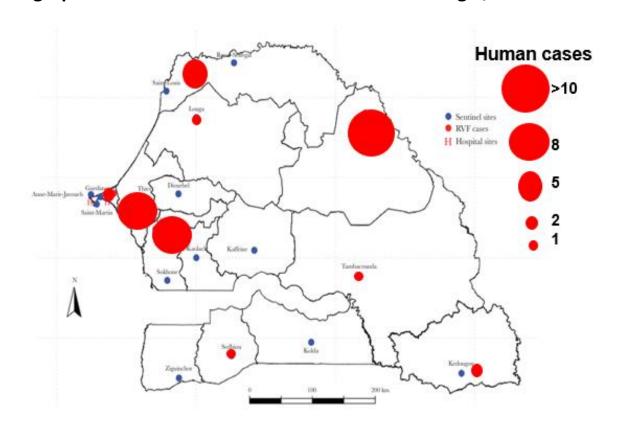
Open Forum Infectious Diseases
MAJOR ARTICLE

Detection of Rift Valley Fever Virus Lineage H From South Africa Through the Syndromic Sentinel Surveillance Network in Senegal

Ndeye Sakha Bob.¹ Mamadou Aliou Barry,² Moussa Moise Diagne,¹ Martin Faye,¹ Marie Henriette Dior Ndione,¹ Amadou Diallo,² Mamadou Diop,² Boly Diop,² Oumar Faye,¹ Cheikh Loucoubar,² Gamou Fall,² and Ousmane Faye

ile of Vinology, Institut Pasteur of Dakar, Dakar, Dakar, Senegal, "Epidemiology, Clinical Research & Data Science, Institut Pasteur of Dakar, Dakar, Senegal, and "Ministry of Health, Dakar, Sene

Article


Re-Emergence of Rift Valley Fever Virus Lineage H in Senegal in 2022: In Vitro Characterization and Impact on Its Global Emergence in West Africa

Ousseynou Sene ^{1,4}©, Samba Niang Sagne ², Ndeye Sakha Bob ¹, Moundhir Mhamadi ³, Idrissa Dieng ¹®, Aboubacry Gaye ²®, Haoua Ba ¹, Moussa Dia ¹®, Elisabeth Thérèse Faye ¹®, Sokhna Mayemouna Diop ¹, Yoro Sall ⁴, Boly Diop ³®, Mamadou Ndiaye ⁴, Cheikh Loucoubar ²®, Etienne Simon-Lorière ²®, Anaaj Sakuntabhai ^{5,7}8, Ousmane Faye ¹, Amadou Alpha Sall ¹, Diawo Diallo ³®, Ndongo Dia ¹, Oumar Faye ¹®, Moussa Moise Diagne ¹®, Malick Fall ⁹% Marie Henriette Dior Ndione ¹®, Mamadou Aliou Barry ² and Gamou Fall ¹®

Surveillance, RVF detection in Senegal, 2012-2024

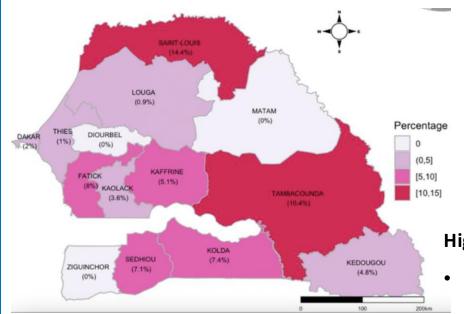
Geographic distribution of RVF human cases in Senegal, 2012-2024

RVF lineages A, H and K detected during these outbreaks

Same lineages caused large outbreaks and deaths in Mauritania

While only sporadics cases or minor epidemics without deaths were detected in Senegal

Different epidemiological profiles that could be explained by several factors including host susceptibility, viral genetic diversity, climatic and environmental factors, vector ecology etc.




Different seroprevalence studies to assess population past exposure to RVFV

1.SECTION RVF seroprevalence in general populations

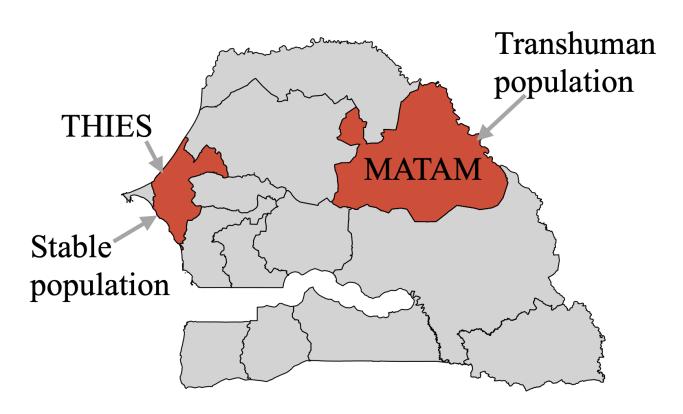
RVF seroprevalence in humans

Nationwide Covid-19 serosurvey used for RVF, from October to November 2020

Higher Seroprevalence in :

- Saint-Louis (14%) and Tambacounda (10%)
- Males with 5.3% (3% in females)
- participants over 30 years old most affected (increasing with age)

2.SECTION


RVF seroprevalence in high risk populations

COHWA Project, funded by DTRA, 2020-24 **DAKAR** *ISRA/LNERV* – Animal/Vector samples IPD – Human samples **MATAM BAMAKO** CICM - Human samples LCV - Animal/Vector samples **BOBO-DIOULASSO** Centre Muraz - Human/Animal/Vector samples Thiès

Comoé

RVF seroprevalence in humans

Targeted population: high-risk populations, livestock breeders, slaughterhouse staff, etc.

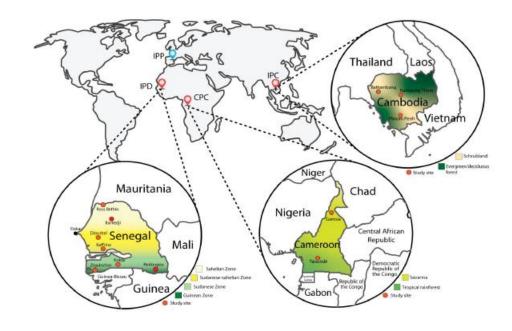
- Populations: transhumance / stable
- Lifestyle: Urban / Rural
- Sampling during dry and rainy seasons

Matam (North-Eastern):

At the border with Mali and Mauritania (where RVF is endemic), where there are lot of human and animal movements.

Thies (Western):

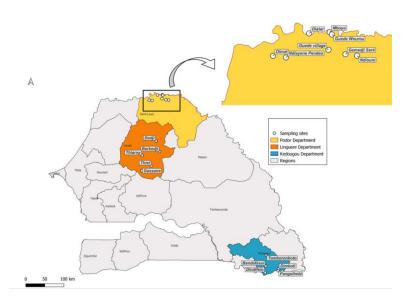
High livestock density and a history of zoonotic outbreaks.


Results: Seroprevalence was significantly higher (p < 0.001) in:

- Matam (19.27%) than in Thies (11.17%)
- Males
- Participants **over 45 years old** (increasing with age)

3.SECTION RVF transmission dynamics in high and low risk populations

Arbosen project, funded by NIH, 2020-25



RVF transmission dynamics

Three different ecological zones, Podor, Barkedji and Kedougou

Podor (Northern): sylvo-pastoral area, at the border with Mauritania where RVF is highly endemic

Barkedji (Central): sylvo-pastoral area, favorable for RVF circulation

Kedougou, South-East: Deforestation for cultivation, gold mining activities, scarce data on RVF

Sample collection before, during and after rainy season, between 2022 and 2024

Humans: healthy high-risk (butchers, breeders etc.) and low-risk (rare or no exposition to livestock) populations, 2-70 yrs old

Participants were classified based on livestock exposure frequency:

- Daily exposure: high risk
- Weekly exposure: intermediate risk
- Rare exposure: low risk
- No exposure

Animals: sheep, cattles and goats (transhumant and sentinel herds)

Mosquitoes: Collect of mosquitoes, pooling by species, sex and host of origin

Livestock sampling

CDC light trap supplemented with CO₂, BG-Sentinel-2 traps and foldable mosquito net traps

RVF seroprevalence in humans: results

RVF overall seroprevalence

• Podor: 28,5%

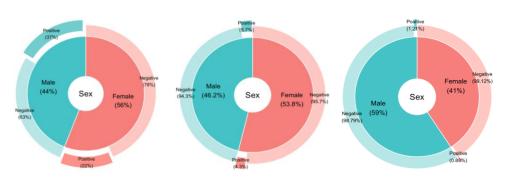
Barkedji: 4,90%

Kedougou: 1,07%

North to South RVF seroprevalence gradient

RVF Seroprevalence By age

Different profiles in the 3 areas


Podor: participants over 20 years olds were affected

(with significant increasing with age)

Barkedji: all age groups were affected while in

Kedougou only the are group 40-60 was affected

RVF Seroprevalence By Sex

Males more affected

RVF Seroprevalence By exposure level to Livestock

Different profiles: contact with livestock remains the main mode

Contact with vectors plays also important role in the transmission in Podor and Barkedji

Serocatalytic modelling to reconstruct circulation history of RVF in Podor: 3 mains outbreaks found!

RVFV data best explained by infrequent but large outbreaks in Northern Senegal (Podor)

RVF seroprevalence in animals

Seroprevalence in sentinel herds

Seroprevalence significantly higher for caprine, comparable between males and females and between Barkedji and Kedougou

Seroconversion dynamics: new infections during mainly dry season (Barkedji) and rainy season (Kedougou)

Seroprevalence in transhumant herds

Seroprevalence comparable between Podor, Barkedji and Kedougou
Significantly higher in bovine, comparable between males and females

RVF and vectors

Main RVF vectors

Cx poicilipes

Ae vexans

Ae dalzieli

Ae ochraeus

Ma africana

Ma uniformis

No detection of RVFV

North-South gradient of the relative abundance of the main vectors

Correlation with seroprevlence in humans

Conclusions

- Overall, RVF seroprevalence in humans is higher in Northern Senegal (rare but large outbreaks), males in all areas and in participants over 20 years old (with significant increasing with age) in many areas
- RVF seroprevalence in animals is comparable in the different regions investigated, but different seroconversion dynamics
- North-South gradient of the relative abundance of the main RVF vectors.
- In Podor and Barkedji, all risk groups are infected (transmission occurs through contact with animals and mosquito bites). In Kedougou, transmission appears to occur mainly through contact with animals, which could probably be correlated with the rarity of the main vectors of RVF in the region.
- Enzootic and regular circulation of RVF in Senegal with different transmission profiles. Emphasizes the need to reinforce surveillance, consolidate seroprevalence data (one health approach and stratification) and adapt strategies for a better disease prevention and control.

Acknowledgements

Virology, Zoology and Epidemiology teams Grant office

MERCI