

Licensure Pathways for vaccines for Emerging Infectious Diseases: considerations relevant for Rift Valley Fever

WHO Workshop, 31 October 2025

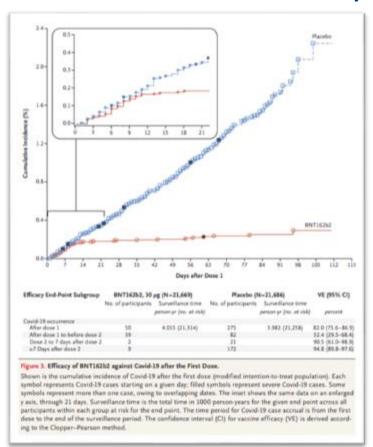
Dr. Marco Cavaleri

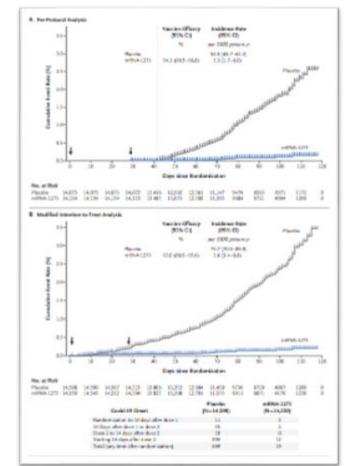
Head **of** Public Health Threats Department Chair of the Emergency Task Force, EMA

Approval pathways for vaccines in the EU

- Full approval based on efficacy (e.g. rotavirus vaccines) or immunological data (e.g. flu vaccines, MenB vaccines)
- Conditional marketing approval (e.g. COVID-19 vaccines during Pandemic)
- Approval under exceptional circumstances (e.g. smallpox vaccine)
- Art. 58 Scientific Opinion (now M4ALL) for use outside of EU (e.g. malaria vaccine)

Clinical requirements for authorisation of a vaccine


Clinical Efficacy studies feasible:


- Absolute protective efficacy of vaccines by comparing the reduction in the incidence of the infectious disease in question vs. the incidence in a group that receives placebo in a prospective individually randomised and double-blind trial
- Case definitions to be used for the primary analysis and any alternative case definitions for secondary analyses usually comprise clinical signs and/or symptoms typical of the infectious disease together with laboratory confirmation of the aetiology

who trs 1004 web annex 9.pdf

COVID-19 vaccines clinical efficacy data

Efficacy and Safety of the mRNA-1273 SARS-CoV-2

Vaccine | New England

Journal of Medicine

Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine | New England Journal of Medicine

Clinical requirements for authorisation of a vaccine

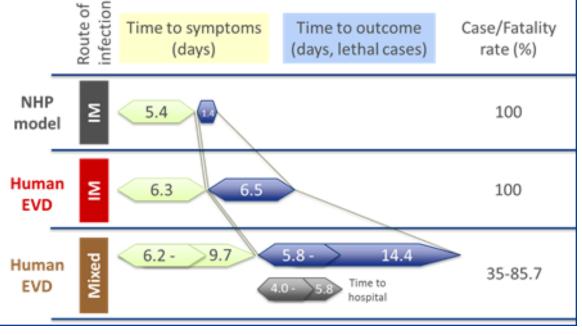
Clinical Efficacy studies not required:

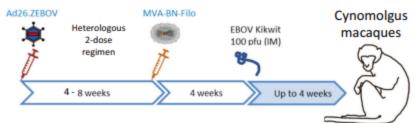
- Well-established Immune Correlate of Protection (ICP): comparative study recommended for safety and to contextualize immunogenicity in case of unexcepted low or high results
- Efficacy can be inferred by comparing immune responses to a licensed vaccine with proven efficacy and/or effectiveness using an immune marker likely to predict protection (immunobridging):
 - comparison based on statistical hypothesis testing (NI or SUP)
 - Immune parameter responsible for efficacy & platform, e.g. Neut Abs
 - Seroconversion and GMTs normally considered as primary endpoints

Clinical requirements for authorisation of a vaccine

Demonstrating Clinical Efficacy is not feasible:

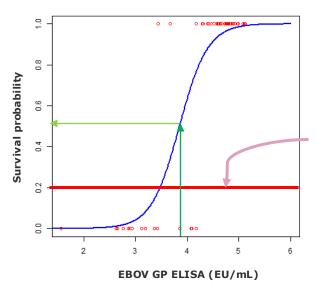
 The disease occurs at too low a rate for a study to be performed in a reasonable timeframe or it occurs in unpredictable short-lived outbreaks (e.g. Filoviruses, MERS, Nipah, Zika, West Nile Virus).


✓ Alternative approaches to establish efficacy:


- ✓ Appropriate animal models of infection with extrapolation to humans based on immunobridging either via logistic regression or definition of putative immune correlate of protection
- √ Controlled Human Infection Models (CHIMs)

• Post-approval efficacy/effectiveness studies or other confirmatory studies needed.

Ebola Virus cynomolgus macaques model of infection



Nonhuman primate to human immunobridging to infer the protective effect of an Ebola virus vaccine candidate (nature.com)

Ebola vaccine Ad26-MVA Immunobridging approach from NHP model

Logistic regression model established from NHP challenge studies

- NHP logistic regression model to determine survival probability in NHP model with human antibody concentrations measured in clinical trials
- Comparison NHP and human responses possible by use of same assay at same lab (EBOV GP FANG ELISA)
- Calculate mean survival probability and 95%
 confidence interval using double-bootstrap method
- Protective effect demonstrated if lower limit of 95% CI above pre-specified success criterion of 20% (endorsed by EMA)
- NHP model >100x lethal dose by IM injection¹:
 - Model can provide evidence of protective effect
 - Model does not provide a direct quantification of vaccine effectiveness in humans

¹CEPI Meeting report: Ebola vaccines regulatory science meeting, 22 Mar 2017, Washington DC; http://do.cplayer.net/57061912-Cepi-ebola-vaccines-regulatory-science-meeting.html

<u>Pre-existing chikungunya virus neutralizing antibodies correlate with risk of symptomatic</u> infection and subclinical seroconversion in a Philippine cohort | Elsevier Enhanced Reader

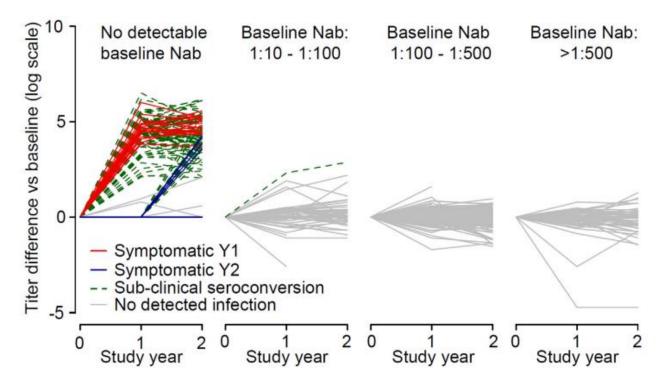
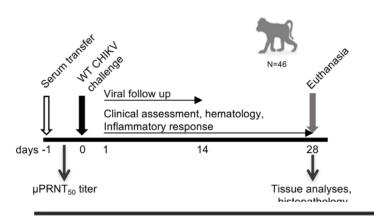



Figure 2. Changes in CHIKV PRNT80 titer (log scale) from baseline to 12 months (study year 1) and 24 months (study year 2) for each cohort participant according to baseline CHIKV PRNT80 titer group: no detectable NAb (<1:10), low titer (1:10 to <1:100), medium titer (1:100–1:500), high titer (>1:500). Red and blue solid lines indicate symptomatic infections, green dotted lines indicate subclinical seroconversions, and gray solid lines indicate no infections/seroconversions. CHIKV, chikungunya virus; PRNT80, 80% plaque reduction neutralization test; NAb, neutralizing antibody.

Effectiveness of CHIKV vaccine VLA1553 demonstrated by passive transfer of human sera

Pierre Roques,¹ Andrea Fritzer,² Nathalie Dereuddre-Bosquet,¹ Nina Wressnigg,²
Romana Hochreiter,² Laetitia Bossevot,¹ Quentin Pascal,¹ Fabienne Guehenneux,³
Annegret Bitzer,² Irena Corbic Ramljak,² Roger Le Grand,¹ Urban Lundberg,² and Andreas Meinke²

¹Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France. ²Valneva Austria GmbH, Campus Vienna Biocenter 3, Vienna, Austria. ³Valneva SE, Saint Herblain, France.

Table 2. Peak viremia for animals with different μ PRNT_{so} titer thresholds.

		µPRNT ₅₀ ≥ 50 (<i>n</i> = 13)	µPRNT ₅₀ ≥ 100 (n=4)	µPRNT ₅₀ ≥ 150 (<i>n</i> = 2)
Peak viremia (copies/mL) Day 2-6	Geometric mean	941.1	16.3	10
	[95% CI]	[100, 8846]	[4, 77]	[10, 10]
Number of NHPs with detected CHIKV RNA	Not detected	4 (30.8%)	3 (75.0%)	2 (100%)
	Detected	9 (69.2%)	1 (25.0%)	0 (0.0%)

The geometric mean for the peak viremia (copies/mL) is shown for each group of animals assigned to the 3 μ PRNT₅₀ thresholds. Numbers of animals with or without detectable CHIKV RNA were calculated for the 3 μ PRNT₅₀ thresholds. Therefore, animals with an μ PRNT \geq 150 are included in the μ PRNT₅₀ \geq 100 and μ PRNT₅₀ \geq 50 columns, and animals with an μ PRNT \geq 100 are included in the μ PRNT₅₀ \geq 50 column. Peak copies/mL values reported as 0 were set to 10 for this summary.

jciinsight-7-160173.pdf (nih.gov)

A Review of Nonhuman Primate Models of Rift Valley Fever Virus Infection: Progress,

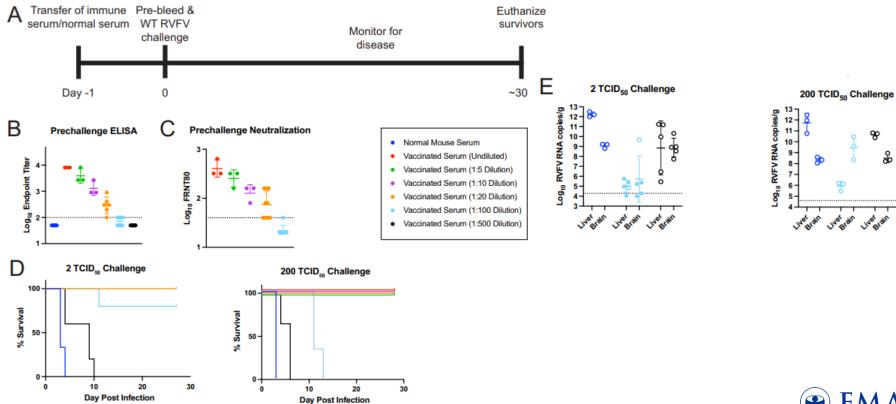
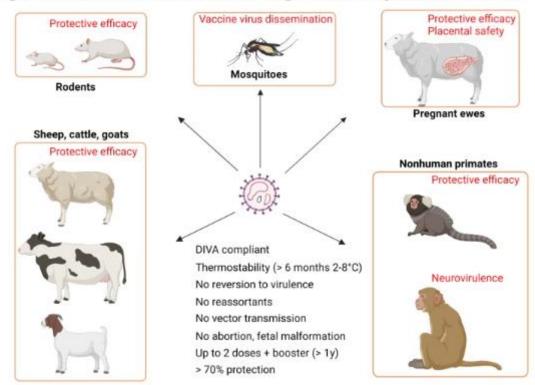

Challenge Strains, and Future Directions

Table 1. Overview of RVFV studies reported in rhesus macaques.

Publication	Challenge Dose	Challenge Route 1	Number 2	Outcomes
Findlay et al., 1931 [64]	Unknown	Unknown	Unknown	Fever and leucopenia.
Findlay, 1932 [65]	Unknown	i.p.	10	Viremia and fever.
		i.c.	1	Viremia and fever.
		s.c.	1	Viremia.
		i.n.	2	Viremia and fever.
Findlay et al., 1936 [66]	Unknown	i.c.	3	Viremia and encephalitis, resulting in being culled.
		i.p.	5	Viremia and encephalitis in 2 animals ⁴ .
		i.n.	2	Viremia, fever and encephalitis.
Smithburn et al., 1948 [67]	Unknown	s.c.	6	 Viremia and fever, dependent on mosquito homogenate inoculum.
Miller et al., 1963 [68]	2820 MIPLD ₅₀ ⁵	Aerosol	4	Viremia and temperature elevation.
	275 MIPLD ₅₀	Aerosol	4	Viremia and temperature elevation.
	145 MIPLD ₅₀	Aerosol	4	Viremia and temperature elevation.
E . 1 400E FOOT	76 MIPLD ₅₀	Aerosol	4	Viremia and temperature elevation.
Easterday, 1965 [69]	Unknown	Unknown	Unknown	Viremia and febrile.
Peters et al., 1986 [70] Peters et al., 1988 [71]	4.2 log ₁₀ pfu	i.v.	3	 Non-clinically ill. All viremic for 3 days. One animal non-viremic, two animals viremic (days 1–3).
reters et al., 1900 [71]	5.3 log ₁₀ pfu 4.7 log ₁₀ pfu	s.c. i.v.	4	Three animals showed transient viremia; one ill with haemorrhagic diathesis and culled on day 7.
	4.1 log ₁₀ pfu 4.1 log ₁₀ pfu	i.v.	3	All were viremic, with one ill with haemorrhagic signs but recovered.
	4.8 log ₁₀ pfu	i.v.	5	Viremic from day 1 up to day 4. One animal culled on day 3.
Morrill et al., 1989 [72]	10 ⁵ pfu	i.v.	17	All developed high viremia peaking at 48 h.
Morrin et al., 1969 [72] 10 Più	10 più	1. v.	17	n = 3 monkeys developed severe clinical signs: anorexia, cutaneous hemorrhage, epistaxis, and vomiting. One died
				on day 8 and two culled on days 6 and 15.
				Of the $n = 14$ which survived, 50% had a clinical illness (cutaneous rash, vomiting, or anorexia), and 7 had no
Morrill et al., 1989 [75]	5.0 log pfu	i.v.		evidence apart from brief pyrexia. • Report from monkeys used above.
	5.0 log ₁₀ pfu	i.m. ³		Report hold monkeys used above. Report based on the data from monkeys used above.
Cosgriff et al., 1989 [74]	5.0 log ₁₀ pfu			
Morrill et al., 1990 [73]	10 ⁵ pfu	i.v.	_	Report based on the data from monkeys used above.
Morrill et al., 1991 [76]	10 ⁵ pfu	i.v.	3	 All viremic with a peak after 24–48 h. One animal showed clinical signs characterised by petechia in the axillary
				and inguinal area alongside a temperature increase.
Morrill et al., 2003 [77]	5.0 log ₁₀ pfu	i.v.	4	 All control monkeys challenged with virulent RVFV had detectable viremia for 3–5 days, and 75% (3/4) had poor
				appetite or anorexia, mild to moderate petechiation in the axillary and inguinal regions, and reduced activity from
				day 3 to 5.
Smith et al., 2011 [80]	7 log ₁₀ pfu	i.v.	4	 All developed viremia, peaking on day 2. None presented with clinical illness.
Morrill et al., 2011 [78]	~10 ⁵ pfu	Aerosol	4	All showed elevated temperatures and viremia.
Morrill et al., 2011 [79]	3×10^6 pfu	i.v.	3	 Reduced activity during the first 2 days. Viremia started at 24 h and continued to day 3.
	$\sim 5 \times 10^5$ pfu	Aerosol	5	 All showed viremia on days 3 and 4. One monkey had a mild transient elevation in rectal temperature coinciding
	-			with the recovery of the virus from the oropharyngeal swab.
Hartman et al., 2014 [81]	5.04 or 5.67 log ₁₀ pfu	Aerosol	2	Biphasic fever, but no other clinical signs indicative of disease.
Bian et al., 2023 [82]	N/A	N/A	N/A	Immunogenicity study, no challenge.

¹ i.p., intraperitoneal; i.c., intracranial; s.c., subcutaneous; i.n., intranasal; i.v, intravenous; s.c., subcutaneous. ² Number of animals in untreated control groups. ³ Presumed error in the manuscript. ⁴ Animals with encephalitis received starch via the i.c. route alongside i.p. RVFV challenge. ⁵ MIPLD₅₀, mouse intraperitoneal lethal dose of 50%.


Immune correlates of protection following Rift Valley fever virus vaccination

Learnings from Animal vaccines

Fig. 4: Schematic of the effective vaccine design for Rift Valley fever (RVF) vaccine.

Summary

- Different options to be considered for generating evidence on benefit- risk including feasibility of individual randomised studies during outbreaks
- Clinical immunogenicity could derive pivotal evidence when an immune correlate of protection is established
- Use of animal challenge models that mimic human infection and disease can be used to determine putative correlates of protection or to infer protection in humans following immunobridging to human immunogenicity
- Safety to be tailored to the specific vaccine platforms, e.g. neurovirulence and genetic stability for live attenuated virus vaccines
- Post-authorisation effectiveness studies are to be required in case of approval based on animal models or immune markers
- Timely discussion with regulators, e.g. Emergency Task Force (ETF) at EMA is crucial to
 ¹⁴ensure successful development

ema.europa.eu

@EMA News

European Medicines Agency

Marco.Cavaleri@ema.Europa.eu

https://vaccination-info.europa.eu/en

Send a question via our website

https://www.ema.europa.eu/en/about-us/contact/sendquestion-european-medicines-agency