Neutralizing epitopes on Lassa GPC and novel immunogens that present them

La Jolla Institute for Immunology Erica Ollmann Saphire, Ph.D. MBA Kathryn Hastie, Ph.D. Haoyang Li, Ph.D.

Arenaviruses express one protein on surface, glycoprotein GPC

receptor binding membrane fusion

Arenavirus GPC

C N
SSP GP1 GP2 TM

Prevailing thought had been: neut. Abs didn't exist for Lassa The right tools to find them just hadn't been available yet

Need the right bait to catch the right fish

Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits

James E. Robinson ™, Kathryn M. Hastie [...] Robert F. Garry

The best antibodies bind fully condensed pre-fusion trimer

...not these

>100 antibodies isolated from Sierra Leonean and Nigerian survivors of Lassa Fever

Most nAbs target prefusion GPC Where do they bind and how can we elicit them?

The challenges for structure determination are the same for nAb elicitation and detection

GPC is metastable

GPC is heavily glycosylated

Proper GP1-GP2 processing required for trimerization

The neutralizing antigenic landscape of LASV GPC GP1-A Li, H., et al, Li, H., et al, Science Trans Med Science Trans Med (2022)(2022)GP1 **GPC-A** GPC-B GP2 Enriquez, AE, et al, Cell Reports Viral membrane Hastie, KM, et al, Science (2017); Cell (2019) Buck, TK, mBio (2022) - Lineage I Li, H., et al, Science Trans Med (2022) Buck, TK, mBio (2022) - Lineage I

>15 years of protein engineering:

GPC-B epitope defined

Version 1
Prefusion monomer

Hastie, Science (2017); Cell (2019) Formed trimer in crystal packing **GPC-A** epitope defined

Pros:
Now have a pre-fusion trimer
Can get GPC-B and GPC-A epitopes

Cons:
Cleavage site still is not native (it was furin)
Can't get GP1-A well
or GPC-C at all

Version 2
Prefusion trimer

Enriquez, Cell Reports (2022) Buck, mBio (2022) - Lineage I

>15 years of protein engineering:

Version 1
Prefusion monomer

Version 2
Prefusion trimer

Version 3
Native-like
trimers

GPC^A Version 3 **GPC**^C Now the top is native 37.7H LC **GPC**^B

37.7H HC

Native cleavage site stabilizes trimer apex

Native cleavage site stabilizes trimer apex

GPC-C nAb requires native cleavage site

The neutralizing antigenic landscape of LASV GPC GP1-A Li, H., et al, Li, H., et al, Science Trans Med Science Trans Med (2022)(2022)GP1 **GPC-A** GPC-B GP2 Enriquez, AE, et al, Cell Reports Viral membrane Hastie, KM, et al, Science (2017); Cell (2019) Buck, TK, mBio (2022) - Lineage I Li, H., et al, Science Trans Med (2022) Buck, TK, mBio (2022) - Lineage I

How to elicit broadly neutralizing mAbs through vaccination?

Lessons learned from 15 years of LASV GPC engineering and antibody analysis

Version 3 GPC can now bind all known nAbs

Lessons learned from 15 years of LASV GPC engineering and antibody analysis

Version 3 GPC can now bind all known nAbs

Although protection is *possible* without strong neutralizing antibody, by T cells alone...

Neutralizing antibodies, when present, are stunningly protective. Plus, they are the only thing that could prevent an infection.

We now have an antigen to elicit them.

Adding neutralizing antibody on top of T cell is the best approach.

Essentially all approved vaccines for other viruses have neutralizing antibody as their primary correlate of protection.

Current Lassa vax candidates: weak or non-neutralizing antibody.

We can improve all of these with the right-shaped GPC.

La Jolla Institute for Immunology
Erica Ollmann Saphire, Ph.D. MBA. erica@lji.org
Kathryn Hastie, Ph.D. kmhastie@lji.org
Haoyang Li, Ph.D. haoyangli@lji.org

With thanks

LJI

Erica Ollmann Saphire
Haoyang Li
Adrian Enriquez
Tierra Buck
Michelle Zandonatti
Stephanie Harkins
Saphire Lab

Tulane University

Robert Garry James Robinson

Zalgen Labs

Luis Branco Anatoliy Koval Megan Rowland Megan Heinrich

Kenema Government Hospital

Support: NIH/NIAID, Burroughs Wellcome Fund