Immune responses in Lassa Fever survivors

Critical research for priority pathogens with epidemic potential
Online Meeting 18-01-2024
Lisa Oestereich, Department of Virology

Lassa Virus as a prototype Arenavirus

Lassa virus and fever
- Ambisense RNA virus
- Arenaviridae family
- 2 Genome segments, 4 proteins
Lassa Virus

Lassa virus and fever

- Estimated 300,000 cases; 5,000 deaths annually
- Many asymptomatic cases; symptoms range from mild flu-like presentation to hemorrhage and fatal shock
- Endemic in West Africa, seasonal; especially in Nigeria
- **2019** Nigerian outbreak:
 > 810 cases and
 > 167 deaths
- **2023** 1,270 laboratory-confirmed cases from 28 of 36 states; 18% case fatality rate

Clinical studies at ISTH, Nigeria

- Pathogenesis study linking laboratory data with clinical data
- **Follow-up of Lassa Fever survivors**

Kinetic of anti-NP IgM

![Graph showing the kinetic of anti-NP IgM](image-url)
Kinetic of anti-NP IgG

Kinetic of anti-preGP/GP IgG
Kinetic of anti-preGP/GP IgG

Anti-preGP IgG

Anti-GP IgG

Kinetic of neutralizing antibodies
Kinetic of neutralizing antibodies

- FU1, FU2, FU3, FU4
- Modified from Ibukun, 2020

Cellular Immune responses in LF survivors – ELISpot design

- Amino acid sequence based on consensus of 2019-2020 lineage II sequences
- 15 aa peptides, overlap of 3 aa
- 5 pools of 24 – 28 peptides per pool
- 2 µg/mL of each peptide for stimulation
- 250,000 PBMC per reaction
T cell recognition of viral peptides

Summary: Immune responses in Lassa Fever survivors

<table>
<thead>
<tr>
<th></th>
<th>NP</th>
<th>GPC</th>
<th>Neutralisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Very early (during viremic phase)</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>+++++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Low titer, high variation</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Late (>3 month post infection)</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
Challenges

- Most vaccines target contain GPC as an antigen
- High genetic variability of LASV strains; vaccines based on “old” lab strain
 - Crossprotection?
- Low neutralizing antibody titer and overall delayed and lower antigenicity of GPC compared to NP
- More and stronger T cells epitopes in NP compared to GPC

Arenaviruses beyond LASV

- Mopeia and Morogoro virus infection of mice or NHP induces protective immunity (LASV challenge)
- No/low cross-reactivity of T cells between different Old World Arenaviruses
- Limited cross-reactivity of antibodies between old World Arenaviruses
- No recognition of New World Arenaviruses with Lassa Fever survivor plasma
Bernhard-Nocht-Institute for Tropical Medicine
Stephan Günther

Anke Thielebein
Mette Hinrichs
Jonas Müller
Solvej Oberhof
Elisa Pallasch
Lukas Jungblut
Linda Niemetz
Sophie Duraffour
Meike Pahlmann
Julia Hinzmann

David Wozniak
Olivia Blake
Ludmilla Unrau
Chris Hoffmann
Sabrina Bockholt
Nele Brinkmann
Colette Sih

Schematic figures were created with Biorender.com