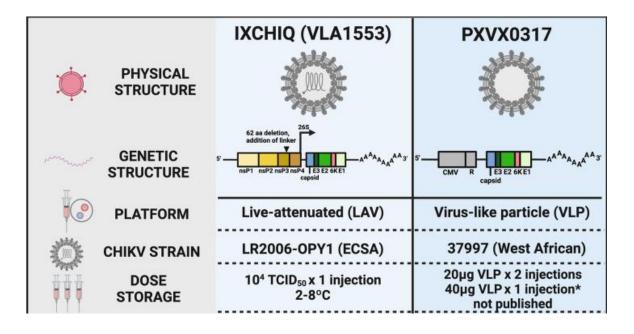


Approved Chikungunya vaccines and post-approval studies

WHO, 8 April 2025

- Dr. Marco Cavaleri
- Head of Public Health Threats Department
- Chair of EMA Emergency Task Force



Two vaccine products are currently licensed in various WHO Member States for use against chikungunya; neither have PQ / EUL status

Product	Description	Dosing	Administration / presentation	where licensed		Contraindications	
IXCHIQ (Valneva)	Live, attenuated vaccine	Single dose regimen	 Lyophilized powder, solvent Intramuscular administration (deltoid) 0.5 ml dose 	 US (Nov 2023) Canada (Jun 2024) EU (Jul 2024) UK (Feb 2025) 	 All countries: 18 and above EU: Pending label extension to 12 and above 	 Immunocompromis ed individuals Caution in pregnant & breastfeeding women 	
VIMKUNYA (Bavarian Nordic)	Virus-like particle, aluminum adjuvant	Single dose regimen	Pre-filled syringeIntramuscular administration0.8 ml dose	US (Feb 2025)EU (Feb 2025)	 All countries: 12 and above 	 (Likely) Caution in pregnant & breastfeeding women 	

Chikungunya vaccines with full approval at EMA

Chikungunya Virus Vaccines:

A Review of IXCHIQ and

PXVX0317 from Pre-Clinical

Evaluation to Licensure |

BioDrugs

Vaccine is indicated for active immunisation for the prevention of disease caused by chikungunya virus (CHIKV) in individuals 12 years and older.

The use of this vaccine should be in accordance with official recommendations.

<u>Pre-existing chikungunya virus neutralizing antibodies correlate with risk of symptomatic</u> infection and subclinical seroconversion in a Philippine cohort | Elsevier Enhanced Reader

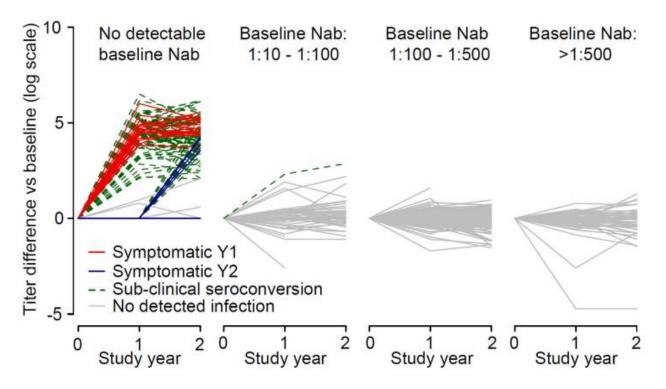
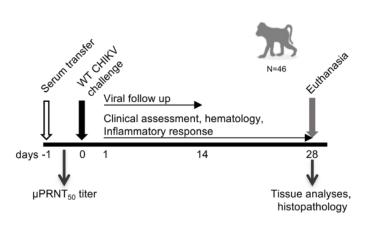



Figure 2. Changes in CHIKV PRNT80 titer (log scale) from baseline to 12 months (study year 1) and 24 months (study year 2) for each cohort participant according to baseline CHIKV PRNT80 titer group: no detectable NAb (<1:10), low titer (1:10 to <1:100), medium titer (1:100–1:500), high titer (>1:500). Red and blue solid lines indicate symptomatic infections, green dotted lines indicate subclinical seroconversions, and gray solid lines indicate no infections/seroconversions. CHIKV, chikungunya virus; PRNT80, 80% plaque reduction neutralization test; NAb, neutralizing antibody.

Effectiveness of CHIKV vaccine VLA1553 demonstrated by passive transfer of human sera

Pierre Roques,¹ Andrea Fritzer,² Nathalie Dereuddre-Bosquet,¹ Nina Wressnigg,² Romana Hochreiter,² Laetitia Bossevot,¹ Quentin Pascal,¹ Fabienne Guehenneux,³ Annegret Bitzer,² Irena Corbic Ramljak,² Roger Le Grand,¹ Urban Lundberg,² and Andreas Meinke²

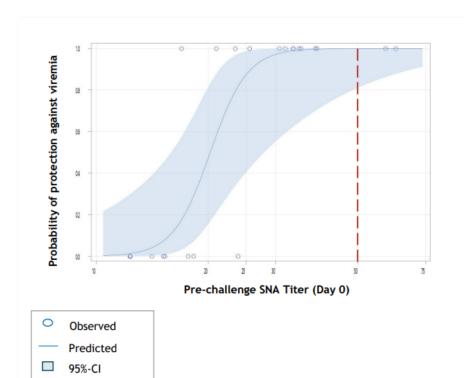

¹Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France. ²Valneva Austria GmbH, Campus Vienna Biocenter 3, Vienna, Austria. ³Valneva SE, Saint Herblain, France.

Table 2. Peak viremia for animals with different μ PRNT_{so} titer thresholds.

		$\mu PRNT_{50} \ge 50 (n = 13)$	µPRNT ₅₀ ≥ 100 (n=4)	µPRNT ₅₀ ≥ 150 (n = 2)
Peak viremia (copies/mL) Day 2-6	Geometric mean	941.1	16.3	10
	[95% CI]	[100, 8846]	[4, 77]	[10, 10]
Number of NHPs with detected CHIKV RNA	Not detected	4 (30.8%)	3 (75.0%)	2 (100%)
	Detected	9 (69.2%)	1 (25.0%)	0 (0.0%)

The geometric mean for the peak viremia (copies/mL) is shown for each group of animals assigned to the 3 μ PRNT₅₀ thresholds. Numbers of animals with or without detectable CHIKV RNA were calculated for the 3 μ PRNT₅₀ thresholds. Therefore, animals with an μ PRNT \geq 150 are included in the μ PRNT₅₀ \geq 100 and μ PRNT₅₀ \geq 50 columns, and animals with an μ PRNT \geq 100 are included in the μ PRNT₅₀ \geq 50 column. Peak copies/mL values reported as 0 were set to 10 for this summary.

Conservative serum neutralizing antibody (SNA) threshold chosen for phase 3 study immunogenicity endpoints based on NHP data & regulatory agency recommendations

Serum passive transfer and challenge study in NHP

- NHPs received pooled sera from human participants vaccinated with CHIKV VLP at various dilutions intravenously and were challenged with CHIKV 24 hours later
- · Logistic regression model:
 - SNA titer of 50 results in 99.97% [81-100] probability of protection against viremia
- Regulatory agencies* proposed and agreed a more conservative SNA titer threshold of 100 to be an acceptable surrogate endpoint

Vimkunya clinical immunogenicity - SmPC

Table 2: Anti-CHIKV SNA seroresponse rate (SRR) at visit days 8, 15, 22 and 183 for phase 3 Study 1 (12 to < 65 years of age) (immunogenicity evaluable population)

Study day	SRR VIMKUNYA (N=2 559) n/N (%) ^a [95% CI] ^b	SRR placebo (N=424) n/N (%) ^a [95% CI] ^b	SRR difference [95% CI] ^c	p-value ^d
Day 8	1 169/2 510 (46.6%) [44.6%, 48.5%]	2/419 (0.5%) [0.1%, 1.7%]	46.1% [43.8%, 48.1%]	< 0.0001
Day 15	2 355/2 434 (96.8%) [96.0%, 97.4%]	3/395 (0.8%) [0.3%, 2.2%]	96.0% [94.3%, 96.8%]	< 0.0001
Day 22	2 503/2 559 (97.8%) [97.2%, 98.3%]	5/424 (1.2%) [0.5%, 2.7%]	96.6% [95.0%, 97.5%]	< 0.0001
Day 183	1 967/2 301 (85.5%) [84.0%, 86.9%]	6/401 (1.5%) [0.7%, 3.2%]	84.0% [81.7%, 85.6%]	< 0.0001

CI = confidence interval; SNA = serum neutralising antibody, SRR = seroresponse rate

a n is the number of participants with seroresponse ≥ titre 100, divided by N, the total number of participants in the group.

b 95% CIs of seroresponse rates are based on the Wilson method.

^c Seroresponse rate difference is (VIMKUNYA minus placebo); 95% CIs are based on the Newcombe hybrid score method. Statistical superiority to placebo and lower bound of the 2-sided 95% CI on the difference in seroresponse rates between VIMKUNYA group and placebo group ≥ 70% (considered clinically significant). ^d p-value is from a 2-sided chi-square test of equality of seroresponse percentages between groups.

Ixchiq clinical immunogenicity - SmPC

Table 2. Seroresponse rates over time, as determined by μPRNT₅₀ assay, in study VLA1553-301 (PP population)

Study	VLA1553-301			
Treatment	Placebo	IXCHIQ		
	N=96	N=266		
	(n [95%CI])	(n (%) [95%CI])		
28 days post-vaccination	0 [0.0, 3.8]	263 (98.9) [96.7, 99.8]		
6 months post-vaccination	0 [0.0, 4.0]	233 (96.3) [93.1, 98.3]		

Abbreviations: CI=confidence interval; µPRNT₅₀=50% micro plaque reduction neutralization test; PP=per-protocol (population)

Vimkunya Safety – EMA assessment report

Effect	Short Description	Unit	CHIKV VLP	Placebo	Uncertainties/ Strength of evidence	References
Solicited AEs (Reactogenicity)	Solicited administration site effects ^a	% of individuals	23.4	8.0	Transient effect, majority mild to	pooled data from ISS (mainly from study - 004)
	Solicited systemic effects ^b	% of individuals	30.7	21.6	moderate in severity	
Unsolicited AEs	all	% of individuals	15.7	14.4		
	related ^c	% of individuals	2.4	1.9		
SAEs	all	% of individuals	1.0	0.6		
	related	% of individuals	0	0		

Solicited administration-site effects include injection-site pain, redness and swelling
Solicited systemic effects include fever, chills, fatigue, headache, myalgia, arthralgia, nausea
by PT most frequent: CHIKV VLP: headache (0.3%), arthralgia (0.3%), dizziness (0.2%), fatigue (0.2%), rash
(0.2%) vs. Placebo: fatigue (0.4%), arthralgia (0.3%), myalgia (0.3%)

Effect	Description	Onic	3	0	/ Strength of evidence	S
Liver function test increased	Alanine aminotransferase (ALT)	%	16.9 14.9 (15.5)*	9.9	301: 497 vac. part. 302: 273 vac. part.	301 T14.3.3.2.2 302 T14.3.3.2.2
	Aspartate aminotransferase (AST)	%	13.0 10.9 (11.7)*	7.4	301: 497 vac. part. 302: 273 vac. part.	301 T14.3.3.2.2 302 T14.3.3.2.2
Chikungunya-like adverse reactions (broad definition)	Combinations of fever with headache, fatigue, myalgia, arthralgia, or other symptoms also reported for acute-stage chikungunya illness	%	12.1	0.6	Total of 4,643 vaccinated participants	Post Hoc analysis
White blood cell count decreased	Neutropenia (neutrophile decreased)	%	42.3 42.7 (41.8)*	12.4	301: 497 vac. part. 302: 273 vac. part.	301 T14.3.3.1.2 302 T14.3.3.1.2
	Leukopenia (leukocyte decreased)	%	32.0 31.4 (31.2)*	5.8	301: 497 vac. part. 302: 408 vac. part.	301 T14.3.3.1.2 302 T14.3.3.1.2
	Lymphopenia (lymphocyte decreased)	%	23.5 22.0 (22.3)*	7.4	301: 497 vac. part. 302: 273 vac. part.	301 T14.3.3.1.2 302 T14.3.3.1.2

Effect

Short

Unit

Placeb

Uncertainties

Reference

Ixchiq Safety –EMA assessment

4.3 Contraindications

Immunodeficient or immunosuppressed individuals due to disease or medical therapy (e.g., from hematologic and solid tumors, receipt of chemotherapy, congenital immunodeficiency, long-term immunosuppressive therapy or patients with HIV infection who are severely immunocompromised)

4.5 Concomitant administration with other vaccines IXCHIQ is not recommended to be co-administered with other vaccines because there are no data on the safety and immunogenicity following concomitant administration of IXCHIQ with other vaccines.

Post-approval evidence for CHIKV vaccines

Obligation to conduct post-authorisation measures

The MAH shall complete, within the stated timeframe, the below measures:

Description	Due date
Post-authorisation efficacy study (PAES): In order to confirm the efficacy of Ixchiq in individuals 18 years and older, the MAH should conduct, according to an agreed protocol, and submit the results of, a randomized, controlled trial with pragmatic elements to assess the effectiveness of Ixchiq vaccination in the prevention of symptomatic, laboratory confirmed chikungunya after a single vaccination with Ixchiq in adults in endemic areas.	Final report due date: 31 Dec 2029

Obligation to conduct post-authorisation measures

The MAH shall complete, within the stated timeframe, the below measures:

Description	Due date
Post authorisation efficacy study (PAES): In order to confirm the efficacy of VIMKUNYA in individuals 12 years and older, the MAH should conduct and submit the	Final report due date:
results of a randomized, placebo-controlled, double-blind, event-driven study to	31st August 2030
analyse efficacy, safety, and immunogenicity of VIMKUNYA in the prevention of chikungunya disease in healthy adults and adolescents in CHIKV-endemic areas,	
according to an agreed protocol.	

Post-approval evidence for CHIKV vaccines

- For RCTs, good understanding of the attack rate to define adequate sample size
- Impact of seropositivity at baseline
- Outbreaks tend to be fast-spreading and short-lived: timing of vaccination critical
- Acceptance by NRAs and RECs in Countries
- Case definition for PCR confirmed CHIKV disease: WHO? Others?
- Case ascertainment: active vs passive surveillance
- PCR testing: central lab vs local
- Evidence on post-acute sequalae besides symptomatic disease

Post-approval evidence for CHIKV vaccines

- Vaccines are approved in the EU as full approval based on strong evidence on correlates of protection with commitments for post-approval clinical studies for confirmation
- Paediatric studies in PIPs: safety and immunogenicity from birth
- Pregnancy registries and for specific aspects also safety studies
- Efficacy: Individually randomised trials are requested, acknowledging the uncertainties on what can be achieved
- Effectiveness studies are expected to be conducted in addition and should be part of the portfolio of options