Methods for Virus Detection and Discovery

W. Ian Lipkin, MD
Director, Center for Infection and Immunity
John Snow Professor of Epidemiology
Mailman School of Public Health
Vagelos College of Physicians & Surgeons
Columbia University

Tools for Precision Medicine and Public Health

Capture sequencing

rapid, sensitive, inexpensive, straightforward platform for discovery, surveillance, and differential diagnosis

Microarrays and Phage Display

assays for exposure that can elucidate causes of outbreaks and provide early evidence of cross species transmission

HIV/AIDS

Two years from disease emergence to identification of the causative agent

Morbidity and Mortality Weekly Report (MMWR)

Weekly | June 5, 1981 | 30(21);1-3

Pneumocystis Pneumonia --- Los Angeles

In the period October 1980-May 1981, 5 young men, all active homosexuals, were treated for biopsy-confirmed *Pneumocystis carinii* pneumonia at 3 different hospitals in Los Angeles, California. Two of the patients died. All 5 patients had laboratory-confirmed previous or current cytomegalovirus (CMV) infection and candida mucosal infection.

Weekly | December 10, 1982 | 31(48);625-9

Epidemiologic Notes and Reports Possible Transfusion-Associated Acquired Immune Deficiency Syndrome (AIDS) -- California

CDC has received a report of a 20-month old infant the from San Francisco area who developed unexplained cellular immunodeficiency and opportunistic infection. This occurred after multiple transfusions, including a transfusion of platelets derived from the blood of a male subsequently found to have the acquired immune deficiency syndrome (AIDS).

20 May 1983 | Vol 220, Issue 4599 | pp. 868-871 | DOI: 10.1126/science.6189183 BARRÉ-SINOUSSI F, CHERMANN JC, ... , MONTAGNIER L

Isolation of T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS)

4 May 1984 | Vol 220, Issue 4648 | pp. 500-503 | DOI: 10.1126/science.6200936 GALLO RC, SALAHUDDIN SZ, ... , MARKHAM PD

Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS

454 Pyrosequencing: Dandenong Virus

Three weeks to identification of causative agent in 3 transplant recipients linked a single donor

nature

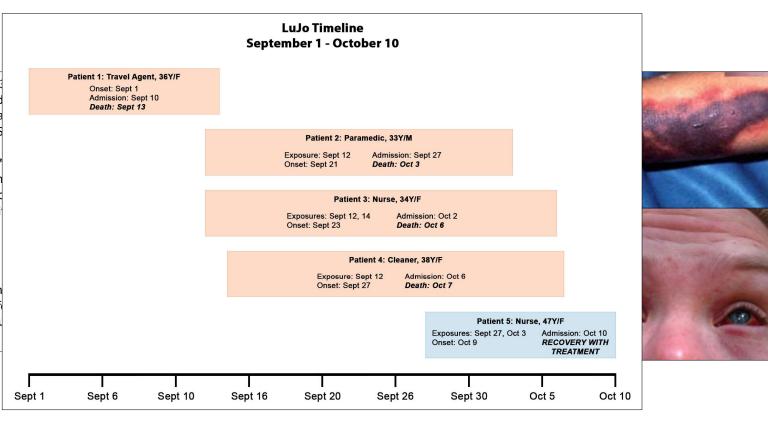
Rapid sequencer puts virus in the frame for deaths

Heidi Ledford | 02 May 2007 | doi: 10.1038/447012b

"Although this sort of sequencing has been used to identify viruses in the past, the 454 technology cuts down on time and effort." *Anthony Fauci*

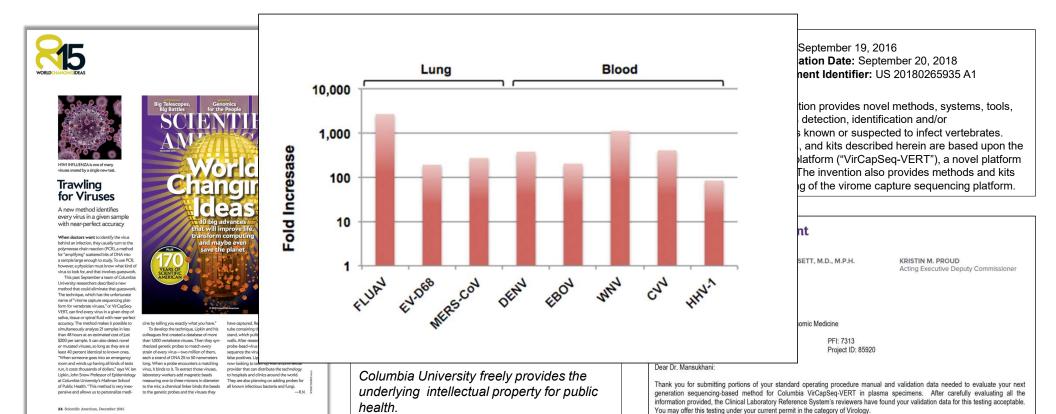
nature biotechnology The development and impact of 454 sequencing Jonathan M Rothberg & John H Leamon | 09 October 2008 | doi: 10.1038/nbt1485

The 454 Sequencer has dramatically increased the volume of sequencing conducted by the scientific community and expanded the range of problems that can be addressed by the direct readouts of DNA sequence. Key breakthroughs in the development of the 454 sequencing platform included higher throughput, simplified all *in vitro* sample preparation and the miniaturization of sequencing chemistries, enabling massively parallel sequencing reactions to be carried out at a scale and cost not previously possible. Together with other recently released next-generation technologies, the 454 platform has started to democratize sequencing, providing individual laboratories with access to capacities that rival those previously found only at a handful of large sequencing centers...In longer term, the principles established by the 454 sequencing might reduce cost further, potentially enabling personalized genomics.


454 Pyrosequencing: LuJo Virus

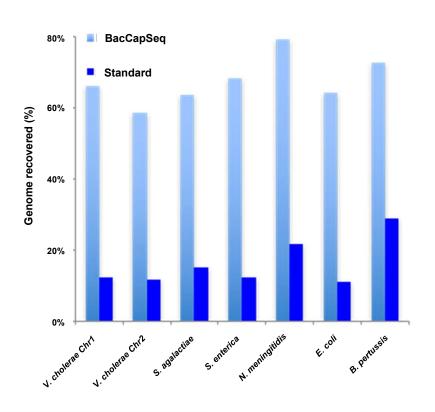
80% mortality; one week from report to identification of causative agent

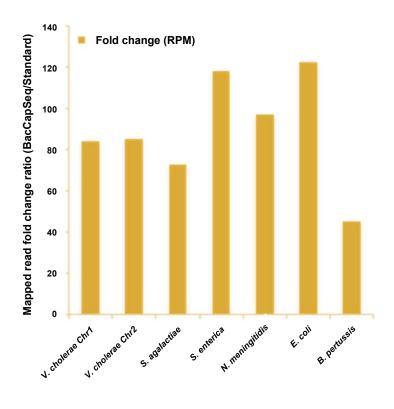
Date: Fri, 10 Oct 2008 17:00: From: ProMED-mail <promed Subject: PRO/AH/EDR> Undia UNDIAGNOSED FATALITIES - S


On 12 Sep 2008, an office em underwent medical evacuatic died in a Johannesburg hospi for the index case during her Johannesburg where he died in South Africa died on 5 Oct in South Africa at the Special (NICD) of the National Health series of viral haemorrhagic fidentify the pathogen continuperformed.

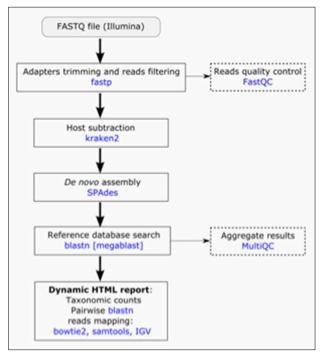
Capture Sequencing: VirCapSeq-VERT

Faster, cheaper, 1,000-fold more sensitive than standard next-gen sequencing (NGS)

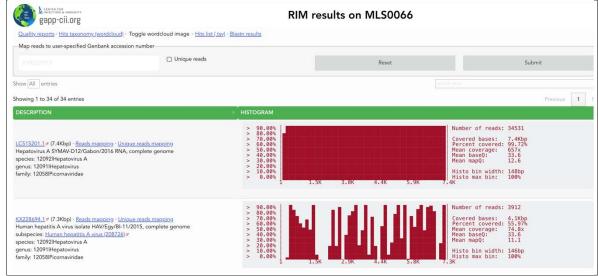

COLUMBIA | MAILMAN SCHOOL
OF PUBLIC HEALTH
CENTER FOR INFECTION AND
IMMUNITY


© 2015 Scientific American

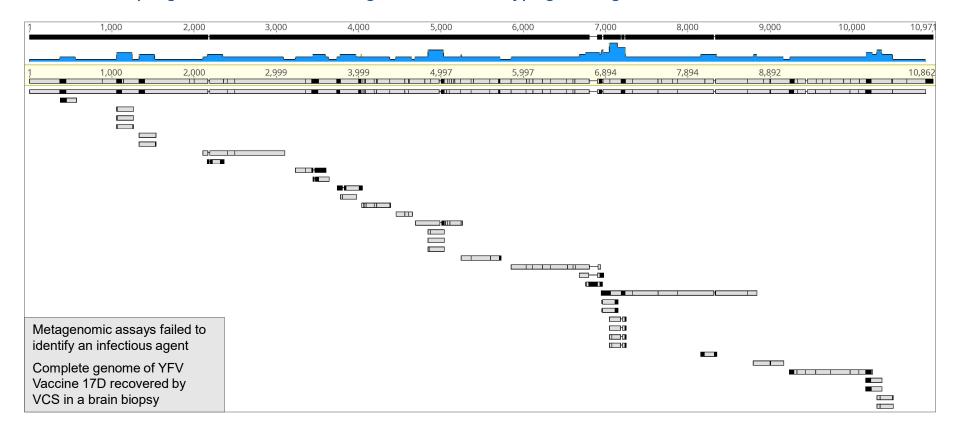
GAPP | GLOBAL ALLIANCE FOR PREVENTING PANDEMICS


Capture Sequencing: BacCapSeq

Rapid Detection of Bacterial and Antimicrobial Resistance Elements

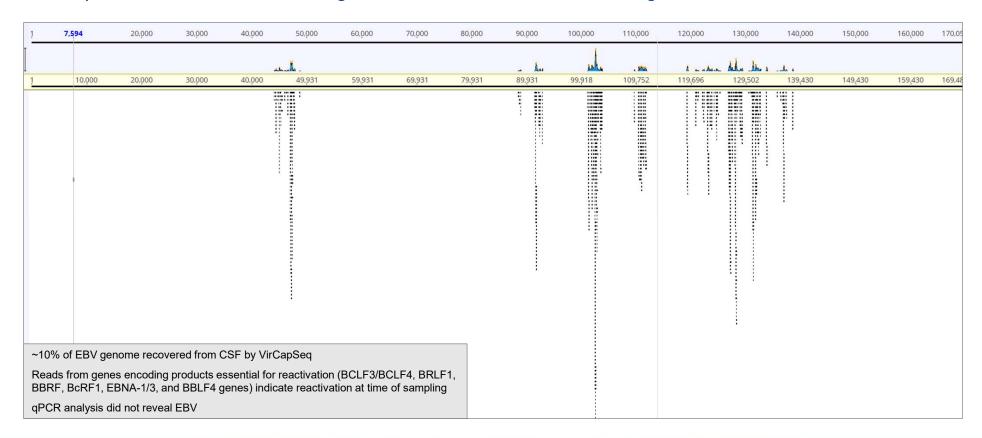


Rapid Identification of Microbes (RIM)

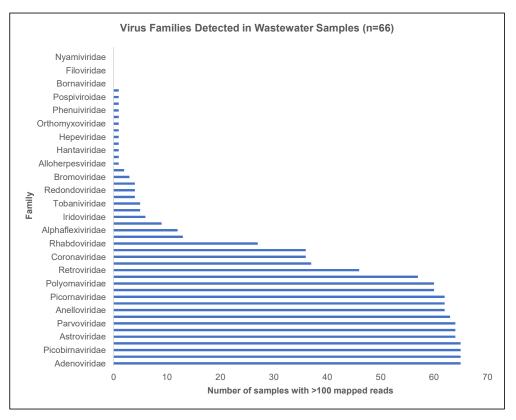

Sample Receipt to Pathogen Identification in <8 hours

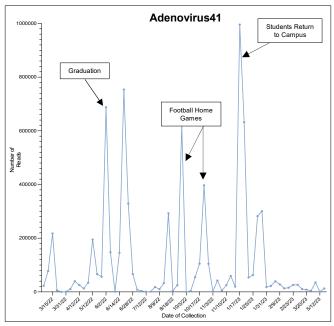
Instrument	# of Samples	# of Reads	Read Length	Runtime
Illumina NextSeq 1000/2000	100	1.2 billion	150 nt	11h
Illumina NextSeq 500	40	400 million	150 nt	12h
Illumina MiSeq	3	25 million	300 nt	5h
Illumina MiniSeq	3	25 million	150 nt	4h
Illumina iSeq	1	4 million	150 nt	9.5h
Oxford Nanopore MinION	1	5 million	1000 nt	8h

Workflow	Unbiased	Capture
Extraction	1h	1h
Library preparation	6h	6h
Hybridization	n/a	1h
Sequencing on MiniSeq	4h	4h
Bioinformatics analysis	8h	2h
Total turn around time	19h	14h
Sensitivity	1x	100-1000x


Rapid Detection of YFV Vaccine Sequences in Brain of Patient With Rapid Onset Dementia Using VirCapSeq-VERT

43YO man, progressive weakness, cognitive decline, hypogammaglobulinemia


Detection of EBV in CSF of a Patient with Headache and Cognitive Dysfunction Using VirCapSeq-VERT


All hospital based viral/bacterial/fungal cultures and PCR tests were negative

Detection of Adenovirus in US Air Force Academy Wastewater Using VirCapSeq-VERT

- Wastewater collected Feb 2022-May 2023
- Major events on campus with visitors illustrate spikes in Adenovirus 41

Investigation of Acute Encephalitis Syndrome (AES) (India) Using VirCapSeq-VERT and BacCapSeq

डा. सौम्या स्वामीनाथन

सचिव, भारत सरकार स्वास्थ्य अनुसंधान विभाग शस्थ एवं परिवार कल्याण मंत्रालय

एव महानिदेशक, आई सी एम आर Dr. Soumya Swaminathan MD. FASG, FNASG, FAMS

MD, FASc, FNASc, FAMS ecretary to the Government of India Department of Health Research Ministry of Health & Family Welfare

Director-General, ICMR

गरतीय आयुर्विज्ञान अनुसंधान परिष

स्वास्थ्य अनुसंघान विभाग स्वास्थ्य एवं परिवार कल्याण मंत्रालय वी. सामितगरवामी भवन, अंसारी नगर नई दिल्ली-110 029 (भारत)

Indian Council of Medical Research
Department of Health Research
Ministry of Health & Family Welfare
V. Ramalingaswami Bhawan, Ansari Nagar
New Delhi-110 029 (INDIA)

No. Secy.(DHR) & DG,ICMR/ 2017 Dated, the 17th August, 2017

Dear Prof. Lipkin

I am writing to invite you to visit the ICMR Hqrs in New Delhi and the NIV field Unit at Gorakhpur, Uttar Pradesh to assist with the investigation of encephalitis outbreak.

As you are aware, AES has been claiming the lives of children in Eastern Uttar Pradesh for many years and the etiology remains unknown in 50% of the cases. Your inputs to improve the diagnosis using advanced sequencing techniques for pathogen discovery will be very useful. I look forward to meeting you in India next week.

Vith regards

Prof. W. Ian Lipkin, MD

Columbia University 722 West 168th Street, 17th Floor

New York, NY 10032

John Snow Professor of Epidemiology and Director Center for Infection and Immunity Mailman School of Public Health Professor of Pathology and Neurology College of Physicians & Surgeons Yours sincerely

(Soumya Swaminathan)

Chief Scientist, WHO 2019-22

AES hospital

under construction

Pathogen Discovery in Musahar Children with Encephalitis in Uttar Pradesh Using VirCapSeq-VERT and BacCapSeq

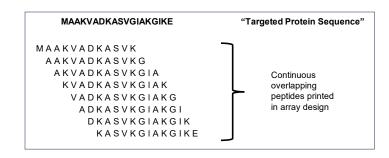
Agents detected in CSF by capture sequencing; >33% treatable with antivirals/antibiotics

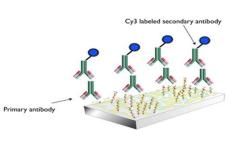
	Total	2015	2016	2017
Total AES Samples	543	153	148	242
Fatal	222	75	77	67
Non-Fatal	321	77	61	175

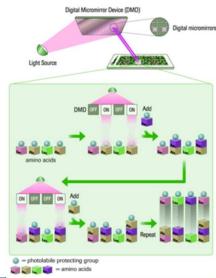
535 samples (CSF = 532; brain autopsies = 3) negative in standard NGS

Known Pathogenic Agents	n = Cases Positive	% Positivity
Japanese Encephalitis Virus	22/543	4.0%
Enteroviruses	14/543	2.5%
Herpesviruses	21/543	3.8%
Orientia tsutsuganmushi	73/543	13.5%
Rickettsia sp.	86/543	15.8%
Co-infection	42/543	7.7%
Other agents*	126/543	23.2%
Total	342/543	63.0%

^{*}Other viruses, or low coverage, or plant, or insect origin viruses


Agnostic Serology: Peptide Microarrays A granular agnostic approach for detecting footprints of infection


- 75 mm x 26 mm glass slides
- Non-redundant 12-mer peptides that tile the length of a proteome with 11-residue overlap


Available designs and peptide density/subarray

	1-plex	3-plex	12-plex
Features in low density array	3M	1M subarray	172K subarray
Features in high density array	6.1M	2.1M subarray	380K subarray

Zika

Discovery of NS2B ZIKV peptide that enabled development of an ELISA

Diagnosis of Zika Virus Infection by Peptide Array and Enzyme-Linked Immunosorbent Assav

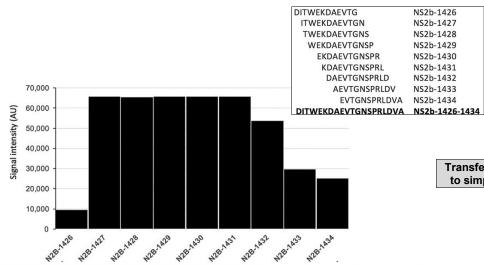
Mishra N, Caciula A, Price A,...Lipkin WI

Research Article | Published 06 September 2018 | doi: 10.1128/mbio.00095-18

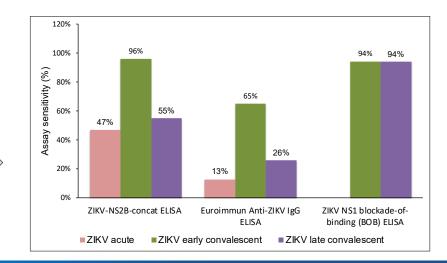
A high-density microarray comprising nonredundant 12-mer peptides that tile, with one-residue overlap, the proteomes of Zika, dengue, yellow fever, West Nile, Ilheus, Oropouche, and chikungunya viruses. Serological analysis enabled discovery of a ZIKV NS2B 20-residue peptide that had high sensitivity (96.0%) and specificity (95.9%) versus natural infection.

Zika Virus Peptide ELISA (ZIKV-NS2B-Concat ELISA) for Detection of IgG Antibodies to Zika Virus Infection

Mishra N, Thakkar R, Ng J, Lipkin WI


Protocol | Published 05 May 2020 | doi: 10.1007/978-1-0716-0581-3_10

An affordable ZIKV NS2B biotinylated peptide ELISA was built and compared with peptide array:


~47% sensitivity in ZIKV acute patients (2-3 weeks post-infection)

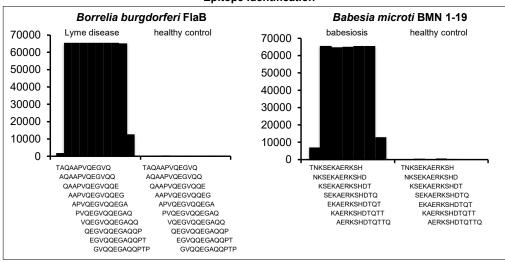
~96% sensitivity in ZIKV early convalescent (1-6 months post-infection)

~55% sensitivity in late convalescent (>6 months post-infection)

Transfer reactive peptides to simple peptide ELISA

Tick-Borne Diseases

SCIENTIFIC A multiplex serologic platform for diagnosis of tick-borne diseases


Tokarz R, Mishra N, Tagliafierro T, ... Lipkin WI

Published 16 February 2018 | doi: 10.1038/s41598-018-21349-2

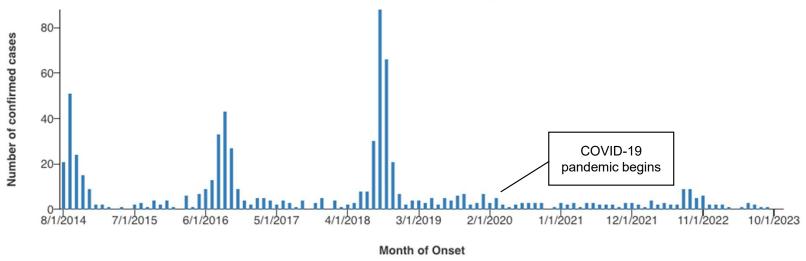
Agent and antigens	Number of 12-mer peptides
Anaplasma phagocytophilum MSP2, MSP4, MSP5, P55, P62, Omp1N	16,787
Babesia microti SA-1, BMN1 (-2, -3, -4-5-6, -7, -8, -10, -11, -12-13, -17, -20, -21), GPI 12, AMA1; Hsp70, DnaK, Bmp32	11,333
Borrelia burgdorferi OspA, OspB, OspC, OspD, VIsE, DbpA and B, BmpA-BmpD, P100, OppA, OppA2, RevA, P66, LA7, BBK07, BBK32, BBK50, FlaA, FlaB, FilL, FlgE, DnaK, BBA04, BBA36, BBA57, BBA64, BBA65, BBA66, BBA68, BBA69, BBA73, BBA74, BBI38, BBI42, BBE31, OspE, OspF, Erp (all paralogs), Mlp (all paralogs), Bdr (all paralogs), BBO03 (all paralogs)	91,338
Borrelia miyamotoi GlpQ, FhbA, ipA, P66, OppA2, FlgG, FlaB, FliL, VLP (1, A1, A2, C1, C2, C3, D1, D2, D3, D4, D5, D5S, D6S, D6, D7S, D8, D9, D10, 3 S, A2S, 4 S 15/16, 18), VSP (1,2, 3, 4, 6)	23,946
Ehrlichia chaffeensis P156, P120, P28/omp-1, Gp47, VLPT, SP-related protein	4,156
Rickettsia rickettsii OmpA, OmpB, OmpW, Porin 4, adr1, adr2	5,855
Heartland virus N, Gn, Gc, L	4,153
Powassan virus polyprotein	7,688
Long Island tick rhabdovirus N, P, M, G, L	3,949

Table 1. Composition of the TBD-Serochip.

Epitope Identification

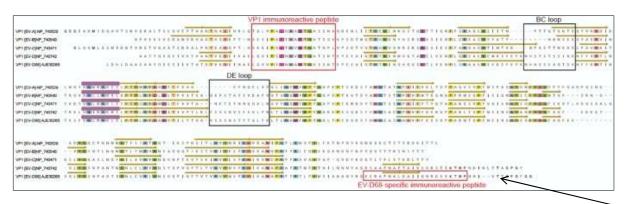
Tick-borne disease	Tick-borne agent	Number of discriminatory peptides identified
Lyme disease	Borrelia burgdorferi	2
Borrelia miyamotoi disease	Borrelia miyamotoi	5
Human granulocytic anaplasmosis	Anaplasma phagocytophilum	2
Human monocytic ehrlichiosis	Ehrlichia chaffeensis	5
Babesiosis	Babesia microti	3

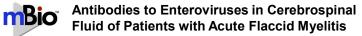
Minimum number of specific and discriminatory peptides required for accurate detection of selected



Acute Flaccid Myelitis (AFM)

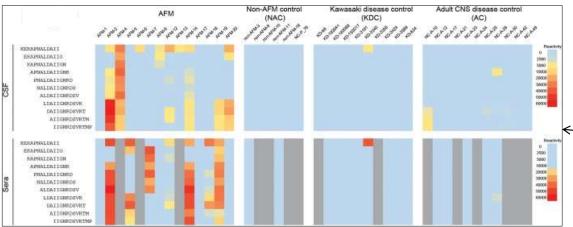
An example of pathogen discovery through serology





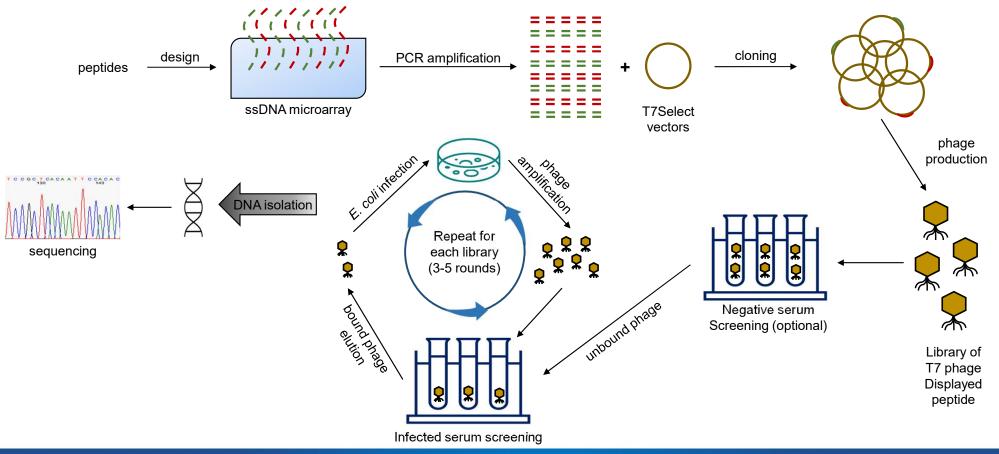
AFM case definition:

- An illness with onset of acute flaccid limb weakness
- MRI showing spinal cord lesion largely restricted to gray matter and spanning one or more vertebral segments
- 99% have a history of febrile illness within 4 weeks of onset of neurological disease (respiratory 75%, GI tract 38%)

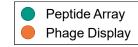

Enterovirus D68 Antibodies in CSF of Patients with AFM

Nischay Mishra, Terry Fei Fan Ng, Rachel L. Marine, Komal Jain, James Ng, Riddhi Thakkar, Adrian Caciula, Adam Price, Joel A. Garcia, Jane C. Burns, Kiran T. Thakur, Kimbell L. Hetzler, Janell A. Routh, Jennifer L. Konopka-Anstadt, W. Allan Nix, Rafal Tokarz, Thomas Briese, M. Steven Oberste, W. Ian Lipkin

Research Article | Published 13 August 2019 | doi: 10.1128/mbio.01903-19


Immunoreactivity against an EV-D68-specific 22-aa VP1 capsid peptide in patients with AFM, non-AFM controls (NAC), Kawasaki disease controls (KDC), and adult CNS disease controls (AC).

Identification of an immunoreactive peptide sequence region in VP1 protein of reference sequence entries for EV-A, EV-B, EV-C, and EV-D



Multiplex Serology Using Phage Display

Concordance Between Peptide Array and Granular Phage Display

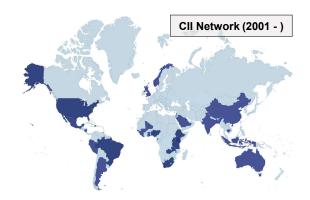
Opportunities to discriminate between infections with related viruses and find evidence of reactivation

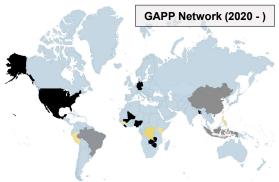
Reaction of Herpesvirus in ME/CFS Patients

Virus	Protein	CASE1	CASE2	CASE3	CASE4	CASE5	CASE6	CASE7	CASE8
HHV4	BZLF1								
HHV4	C M protease								
HSV1	E- Protein								
HHV-6A	Helicase								
HHV3	Large Tegument Protein								
HHV3	UL32								

Convalescent COVID-19 Patients

Virus	Protein	Sample1	Sample2	Sample3	Sample4	Sample5	Sample6
	ND						
	NP						
Coronavirus	C.D.						
	GP						


GAPP


Mission in support of the IHR 2005

- Build capacity for infectious disease surveillance in low- and middle-income countries
- Catalyze regional and global collaboration
- Foster a culture of trust and respect by through recognition of contributions

Virtual (2 weeks)	In-person NYC (3 weeks)	In-country
Education	<u>Train</u>	Facilitate
Ethics and biosafety	Sequencing	Needs assessments
Experimental design	Serology	Salary support/retention
Collection, processing, and storage	Data analysis	Supplies
Data management		Bioinformatics
Bioinformatics and data analysis		

GAPP: Capacity Building

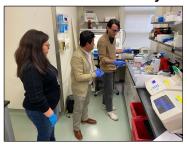
Black: active; grey: inactive; yellow: anticipated

Training Cohorts:

2021: Liberia

2022: Mali, Zambia

<u>2023</u>: Bangladesh, Germany, Mali, Mexico, Nigeria, US Air Force, Zambia


 $\underline{2024~(anticipated)}\!:$ Democratic Republic of the Congo, Guinea, Kenya, Peru, the Philippines,

Taiwan, Zimbabwe

Sequencing and Serology

- Supplies (volume purchasing)
- Computational tools and databases

Mexico and Germany Cohorts at CII, February 2023

In-country training at CHAZ (Zambia), August 2023

