Simple, large-scale, multi-country individually randomized placebo-controlled trial STRAWMAN VERSION

This preliminary version has been developed to support deliberations throughout the consultation process. It should not be construed as reflecting the preferences or positions of the organizing committee, but rather serves as a structural tool designed to guide and enhance the quality of discussions

ATLIBY TITLE	CORE I I DI I I DISSI I I I I I I I I I I I
STUDY TITLE	CORE protocol: Randomized Rift Valley Fever (RVF) vaccine
	trial in humans in multiple sites
STUDY OBJECTIVE(S)	To estimate the vaccine efficacy in humans
SIODI ODSECTIVE(S)	10 commune the vaccine emeacy in Hornaris
STUDY DESIGN	Humans randomized to a single vaccine chosen for evaluation
	or control (in a 1:1 ratio) within study sites
POPULATION	Humans at elevated risk of RVF infection
1 31 32 111 311	Livestock handlers, abattoir workers, herders, and others
	with frequent animal contact are recognized as the most
	affected population and are a high-priority sampling
	group. The Senegal epidemic is notably affecting young
	people (ages 15–30) and males, making them a key
	consideration for the trial's target population.
	consideration for the that starger population.
INITERVENITION	
INTERVENTION	One or more experimental vaccines
COMPARATOR	Pl <mark>ace</mark> bo (or active comparator)
RANDOMIZATION	Individual randomization to vaccine or placebo
KANDOMIZATION	Allocation ratio 1:1
	Allocation ratio 1.1
PRIMARY OUTCOME	Vaccine efficacy in humans for preventing laboratory-
	confirmed RFV disease (using a combination of RT-PCR testing
	and IgM testing for case confirmation)

SECONDARY OUTCOMES

Vaccine efficacy in preventing severe disease - Assessment of mild to severe cases and stratified analysis by disease severity Severe disease can be defined as requiring hospitalization, progression to organ failure/complications, or death.

- For hospitalized patients, the CFR can be high in some places so would need to see what proportion of cases are being hospitalized. Can also measure viral clearance kinetics in a subgroup (this could help provide more information to plan for therapeutic trial).

Vaccine safety - evaluate the safety and tolerability of the RVF vaccine candidate in healthy adult volunteers, including assessment of solicited local and systemic adverse events for 7 days post-vaccination, unsolicited adverse events for 28 days, and serious adverse events throughout the study duration

Immunogenicity data - Immunological Endpoints

- Neutralizing Antibody Responses: Geometric mean antibody titers (GMT) measured by focus reduction neutralization test (FRNT80) at multiple timepoints (Days 0, 7, 14, 28, 84, 112, 365, and 18 months)
- IgG Antibody Responses: Geometric mean antibody titers for IgG antibodies against RVFV glycoproteins (Gn/Gc) measured by ELISA
- Cellular Immune Responses:
 IFN-γ responses to RVFV Gn and Gc glycoproteins
 measured by ELISpot assay (Spot Forming Units per 10^6
 PBMCs)
 - Multi-functional T cell responses measured by flow cytometry

Infection Rate: Detection of RVFV infection regardless of clinical symptoms, requiring DIVA (Differentiating Infected from Vaccinated Animals) testing

Duration of Immunity: Assessment of antibody persistence and durability of immune responses, particularly in prime-boost vaccination regimens

EXPLORATORY OUTCOMES

Immunological Correlates of Risk: Identification of immune markers that correlate with protection or increased susceptibility to RVFV infection

Surrogate Markers of Protection: Development of immunological surrogates that can predict vaccine efficacy without requiring clinical endpoints

Minimal Protective Titer: Determination of the minimum neutralizing antibody titer required for protection (studies suggest titers ≥1:5-1:20 may be protective)

	ne Seropositivity Impact: Assessment of how prior RVFV ure affects vaccine safety and efficacy
	uncy Safety: Safety evaluation in pregnant women,
1	ularly important given spontaneous abortion risks
1 '	ated with both natural RVFV infection and some
	ary vaccines
· —	ealth Approach: In outbreak settings, evaluation of
	ned human and animal vaccination strategies on
	n disease prevention
Homai	raisease prevention
FOLLOW-UP To be o	determined; probably one year. Study may continue for
longer	if sufficient number of endpoints are not obtained.
STATISTICAL Planne	ed statistical tests:
	all models will be used to estimate vaccine efficacy and
effecti	
	y analysis: Simple Cox model and Kaplan-Meier curves
	data: Simple comparisons using t-tests or small sample
equivo	
l '	power: Study will continue (potentially across outbreaks)
1 ' '	fficient data are obtained to perform efficacy analysis.
	0 cases, a 20% lower bound on efficacy would be met
	point estimate of 70%, and a vaccine with true efficacy
	would have ~80% power to meet a 20% lower bound.
	analysis: Any interim analysis will use group sequential
	s with O'Brien-Fleming stopping rules.
	ed consent process. There will be informed consent
	participants are vaccinated with vaccine or placebo
	committee approval. There will be full approval from the
	ethics committees involved
	ersight will be provided by a single Steering Committee
	nd a single data monitoring committee (DMC).
-	ive aspects of the study, to the extent not predefined in
	ptocol, will be governed by the SC, which will not have
	s to unblinded study data.
	e of the DMC will be to apply pre- (and SC-) defined
	t and lack of benefit criteria to the vaccines, and to
	ss potential safety issues as well as data integrity issues.
Once	one or more vaccines meet specified success criteria,
new et	ficacy/lack of benefit criteria will be introduced.