Using New Technologies to Define the Atomic-level Details of Surface Proteins Likely to be Vaccine Targets

Structure-based Vaccine Antigen Design

Rappuoli et al, J Exp Med 2016

Structural Biology: Cryo-EM

Structural Biology: Cryo-EM

Multiplexing to Increase Antigen-Antibody Structure Throughput

High-throughput antibody isolation combined with precise binning of antibodies into competition groups allows

multiple antibody interfaces to be structural determined simultaneously

McLellan lab, unpublished

New Advances in Automated Model Building Accelerate Structure Determination Efforts

Jamali, ..., Scheres. https://www.biorxiv.org/content/10.1101/2023.05.16.541002v2.full

Cryo-EM Imaging Scaffolds to Enable Determination of Small Proteins

Electron-microscopy-based Polyclonal Epitope Mapping (EMPEM)

EMPEM Experiments with LASV GP Monomers Reveal Responses Targeting the Trimer Interior

Brouwer, ..., Ward. https://www.biorxiv.org/content/10.1101/2023.12.21.572918v1.full.pdf

MutComputeX: Using Self-supervision to Learn What Proteins "Should" Look Like

Vison-based approach: uses protein structures for input and training

Center microenvironment around an amino acid

Delete **remaining** protein atoms

Delete centered amino acid and use as label Classification into amino acid likelihoods

Torng and Altman, BMC Bioinformatics 2017

Stability Oracle: Fine-Tuning MutComputeX on Thermodynamic Stability (ΔΔG)

Input: Masked Microenvironment of Chemistry and vector representations of amino acids (embeddings)

Feature Extractor and Amino Acid embeddings are obtained from a pre-trained classification model (MutComputeX)

Stabilizing RSV Fusion (F) Glycoprotein Substitutions

Ajit Ramamohan

ML Model Predictions of Stabilizing RSV F Cavity-Filling Substitutions

	S190F	V207L
Stability Oracle (ΔΔG)	-1.0	-0.1
Stability Fold (ΔΔG)	0.4	0.4
Prostata-IFML (ΔΔG)	0.2	0.0
MutComputeX (Log Probability)	1.4	-0.4
ProteinMPNN (Log Probability)	0.7	0.0

 $\Delta\Delta G$ < 0 and Log Probability > 0 are predicted to be beneficial

Ajit Ramamohan

Exemplary Substitutions for SARS-CoV-2 Spike (S) Stabilization

Ajit Ramamohan Hseih et al., Science. 2020

ML Model Predictions of Stabilizing SARS-CoV-2 S Proline Substitutions

	F817P	A892P	A899P	A942P		
Stability Oracle (ΔΔG)	-0.1	-0.9	1.6	0.1		
Stability Fold (ΔΔG)	1.0	0.0	0.8	1.3		
Prostata-IFML (ΔΔG)	1.1	0.8	1.0	1.7		
MutComputeX (Log Probability)	0.9	2.3	0.4	-0.1		
ProteinMPNN (Log Probability)	1.6	-0.1	-0.6	1.0		

 $\Delta\Delta G<0$ and Log Probability > 0 are predicted to be beneficial

Ajit Ramamohan

Synthetic Biology for Antigen Engineering

High-throughput synthetic biology accelerates antigen engineering by enabling rapid design-build-validate cycles for many new protein designs

Jimmy Gollihar

Houston Methodist

Scripts are Necessary for High-throughput Synthetic Biology

Sample handling & Barcode Management

Genetic Design Pipetting & Echo Update Volumes Top Up **Validation & Sequencing** Assemble & transform Source Check source volumes **Modular Cloning** Modular Cloning **DNA to Source** DNA **Assembly DNA Parts Echo plates Assemblies Clones** Load Echo plates Mix assemblies Drop plate **Update Barcodes** Hit-pick **Assembly** Set **Label Tubes** good **Pick Set Up Sequencing** Concentrations to Clones clones clones Quantify DNA Select **Sequencing Results** Clones Sequencing **Overnights** Constructs Analyze sequencing **Amplicon** Plate miniprep sequencing

Jimmy Gollihar

Houston Methodist

High-throughput Variant Screening via Flow Cytometry

- Screened 10 proline substitutions and 8 disulfide substitutions for binding to 26 antibodies in a few hours
- Heat-shocked the cells to induce conformational change and assess retention of antibody binding

									_							,		O			
Name	mAb					prolines						14	L6					disulfide	S		
10.48	1	973.03	289.88	256.53	168.71	345.04	338.79	440.5	297.47	254.97	1061.5	370.37	77.94	85.48	546.06	272.53	934.2	980.95	1343.91	1323.75	649.89
12.1F	2	3587.36	987.53	781.57	496.72	1000.08	1027.92	1674.35	1109.8	917.79	2137.7	1460.93	87.52	97.03	2321.55	1544.67	1019.6	3487.78	3697.8	3521.91	2177.84
18.5C	3	313.17	187.09	149.91	142.29	191.11	233.55	211.72	181.43	104.17	359.13	204.85	87.03	86.17	180.18	225.5	179.55	799.69	451.84	322.4	269.25
18.5C-M30	4	1461.93	557.68	496.72	614.75	627.91	1309.01	812.56	921.26	136.48	1208.26	719.11	104.17	98.61	789.39	674.2	578.37	1886.22	2009.97	1537.99	632.98
19.7E	5	2627.64	1083.98	761.62	637.94	1122.38	1192.04	1603.12	1261.92	837.59	1936.78	1467.34	84.53	86.78	2334.13	1847.71	1857.82	3226.6	3393.49	3295.73	1918.38
25.10C	7	3925.26	1400.1	1023.76	784.06	1506.93	1669.05	2469.95	1704.2	1276.62	2835.21	2251.39	83.44	81.53	3283.35	2663.4	3388.94	4311.92	6242.23	5965.83	3693.02
25.6A	8	402.88	209.1	174.15	155.94	207.61	262.67	234.36	210.1	126.15	261.7	197.87	89.44	83.81	263.91	221.77	192.58	681.69	536.27	454.66	313.17
36.1F	9	1186.07	503.84	396.06	325.46	571.89	454.66	646.72	403.44	380.54	809.32	558.25	106.5	96.22	697.34	585.67	740.23	2288.48	2878.22	3359.41	1695.01
36.9F	10	106.31	98.97	97.45	75.46	112.12	153.38	109.28	95.65	92.99	97.63	99.54	87.16	90.87	104.54	103.34	86.61	180.39	132.17	125.05	126.57
37.2D	11	995.01	434.98	352.58	316.38	442.86	566,76	644.19	501.26	304.88	1071.07	482.79	93.95	85.39	666.76	594.09	551.84	1819.17	2036.04	1293.24	953.11
37.2G	12	196.34	144.48	105.48	114.59	163.89	187,44	140.49	139.42	94.92	200.72	138.47	78.11	90.58	137.77	148.85	135.21	396,79	298.16	205.72	209.56
37.7H	13	818.81	382.95	273.25	282.63	445.03	535.81	539.67	533.2	85.29	703.67	444.02	89.45	88.02	688.05	514.01	581.39	1365.59	2062.7	1315.51	883.08
8.11G	14	943.88	365.61	292.45	255.53	387.69	370.26	482.79	360.47	293.8	567.09	375.49	85.75	80.77	507.76	442.61	526.15	1227.22	1206.12	1607.14	799.69
8.9F	15	1158,68	243.47	164.48	123.46	296.07	291.46	363.83	357.17	184.01	349.32	310.25	82	92.71	845.03	451.14	1178.3	1291.24	1576.14	1974.06	522.9
9.8A	16	703.67	271.82	245.38	204.6	260.26	329.28	364.13	327.31	146.71	601.77	320.66	77.42	92.46	418.97	348.37	258.56	911.75	1342.84	580.37	602
NE13	17	200,88	121.35	115.19	106.14	137.56	152.69	146.71	129.33	96.19	160.76	147.21	82	83.03	136.77	155.94	140.37	239.52	286.6	223.5	174.82
18.5D	18	235.74	215.02	212.09	147.08	193.24	221.52	264.35	205.6	236.52	278.6	237.84	200.36	248.14	230.63	275.6	283.57	331.01	329.26	329.89	329.93
LAVA01	19	207.84	98.16	104.17	74.32	111.85	106.99	122.51	111.76	101.96	125.73	109.75	76.9	88.02	117.74	111.5	83.36	202.57	351.07	365.9	263.5
10.4B-Li	20	3981.07	5524	4457.89	2658.26	2770.14	3354.57	4707.58	3493.44	4939.06	5401.99	5489.44	5844.94	7877.22	4763.36	7376.35	7094.59	5159.68	6515.21	6185.11	8330.17
12.1F-pdb	21	2322.9	687.82	555.43	396.35	775.81	765.31	1268.18	894.72	672.11	1509.28	1041.74	81.11	83.2	1839.46	1196.01	928.48	3094.72	3957.64	3566.68	2293.34
18.5C-pdb	22	314.69	200.11	159.54	158.73	223.61	252.54	213.36	204.67	95.51	395.85	186.57	83.68	88.56	204.25	216.61	185.98	502.82	502.41	360.56	316.81
25.10C-FNQI	24	4508.66	1579.96	1283.22	766.94	2013.38	1781.65	2766.58	1873.28	1301.13	2947.19	2059.48	73.64	77.3	3240.54	2590.72	3382.21	5262.07	6293.92	6372.83	3828.47
36.1F-pdb	25	1557.43	684.92	527.92	393.15	787.03	725.88	1018.56	661.04	504.64	1098.5	781.57	121.98	134.89	990.53	951.09	918.18	2648	3510.43	3450.23	1986.66
8.9F-pdb	26	505.27	176.75	124.53	109.28	217.02	212.81	263.71	263.91	121.85	215.81	186.3	74.09	92.91	477.35	250.27	802.09	700.55	893.82	958.34	338.48
Name 10.48	mAb 1	2.63	0.78	0.69	0.46	0.93	0.91	1.19	0.80	0.69	2.87	1.00	0.21	0.23	1.47	0.74	2.52	2.65	3.63	3.57	1.75
10.46 12.1F	2	2.63	0.78	0.69	0.46	0.68	0.70	1.15	0.80	0.63	1.46	1.00	0.06	0.23	1.59	1.06	0.70	2.89	2.53	2.41	1.49
12.1F 18.5C	3	1.53	0.68	0.53	0.69	0.68		1.15	0.76	0.51	1.75	1.00	0.06	0.07	0.88	1.10	0.70	3.90		1.57	1.49
18.5C-M30	4	2.03	0.78	0.73	0.85	0.93	1.14	1.13	1.28	0.51	1.75	1.00	0.42	0.42	1.10	0.94	0.80		2.21	2.14	0.88
19.7E	5	1.79	0.74	0.52	0.43	0.76	0.81	1.09	0.86	0.19	1.32	1.00	0.06	0.06	1.59	1.26	1.27	2.62	2.31	2.25	1.31
25.10C	7	1.79	0.74	0.52	0.45	0.76	0.74	1.10	0.76	0.57	1.32	1.00	0.04	0.06	1.46	1.18	1.51	1.92	2.77	2.65	1.64
25.6A	8	2.04	1.06	0.43	0.33	1.05	1.33	1.18	1.06	0.57	1.32	1.00	0.45	0.42	1.33	1.12	0.97	3.45	2.71	2.30	1.58
36.1F	9	2.12	0.90	0.71	0.58	1.02	0.81	1.16	0.72	0.68	1.45	1.00	0.19	0.17	1.25	1.05	1.33	4.10	5.16	6.02	3.04
36.9F	10	1.07	0.99	0.71	0.76	1.13	1.54	1.10	0.72	0.08	0.98	1.00	0.19	0.17	1.05	1.04	0.87	1.81	1.33	1.26	1.27
37.2D	11	2.06	0.99	0.73	0.66	0.92	1.17	1.33	1.04	0.63	2.22	1.00	0.19	0.91	1.38	1.23	1.14	3.77	4.22	2.68	1.97
37.2G	12	1.42	1.04	0.76	0.83	1.18	1.35	1.01	1.01	0.69	1.45	1.00	0.56	0.18	0.99	1.07	0.98	2.87	2.15	1.49	1.51
37.7H	13	1.84	0.86	0.62	0.64	1.00	1.21	1.22	1.20	0.19	1.58	1.00	0.30	0.03	1.55	1.16	1.31	3.08	4.65	2.96	1.99
8.11G	14	2.51	0.97	0.78	0.68	1.03	0.99	1.29	0.96	0.78	1.51	1.00	0.23	0.22	1.35	1.18	1.40	3.27	3.21	4.28	2.13
8.9F	15	3.73	0.78	0.78	0.40	0.95	0.99	1.17	1.15	0.78	1.13	1.00	0.26	0.22	2.72	1.45	3.80	4.16	5.08	6.36	1.69
9.8A	16	2.19	0.78	0.77	0.64	0.81	1.03	1.14	1.02	0.46	1.88	1.00	0.24	0.30	1.31	1.09	0.81	2.84	4.19	1.81	1.88
NE13	17	1.36	0.82	0.77	0.72	0.93	1.04	1.00	0.88	0.46	1.09	1.00	0.56	0.56	0.93	1.06	0.95	1.63	1.95	1.52	1.19
18.5D	18	0.99	0.90	0.78	0.62	0.93	0.93	1.11	0.86	0.99	1.17	1.00	0.84	1.04	0.93	1.16	1.19	1.39	1.38	1.39	1.19
LAVA01	19	1.89	0.90	0.95	0.68	1.02	0.93	1.12	1.02	0.93	1.15	1.00	0.70	0.80	1.07	1.02	0.76	1.85	3.20	3.33	2.40
10.48-Li	20	0.73	1.01	0.95	0.48	0.50	0.61	0.86	0.64	0.90	0.98	1.00	1.06	1.43	0.87	1.34	1.29	0.94	1.19	1.13	1.52
12.1F-pdb	21	2.23	0.66	0.53	0.48	0.50	0.73	1.22	0.86	0.65	1.45	1.00	0.08	0.08	1.77	1.15	0.89	2.97	3.80	3.42	2.20
18.5C-pdb	22	1.69	1.07	0.86	0.85	1.20	1.35	1.14	1.10	0.51	2.12	1.00	0.45	0.08	1.09	1.15	1.00	2.70	2.69	1.93	1.70
25.10C-FNQI	24	2.19	0.77	0.62	0.85	0.98	0.87	1.14	0.91	0.51	1.43	1.00	0.45	0.47	1.57	1.16	1.64	2.56	3.06	3.09	1.70
36.1F-pdb	25	1.99	0.77	0.62	0.50	1.01	0.93	1.34	0.91	0.65	1.43	1.00	0.16	0.04	1.27	1.22	1.17	3.39	4.49	4.41	2.54
8.9F-pdb	26	2.71	0.88	0.67	0.59	1.16	1.14	1.42	1.42	0.65	1.16	1.00	0.40	0.17	2.56	1.34	4.31	3.76	4.80	5.14	1.82
o.ar-pao	26	2.71	0.95	0.07	0.59	1.10	1.14	1.42	1.42	0,00	1.10	1.00	0.40	0.50	2.50	1.34	4.31	3,76	4.80	3.19	1.62

Jimmy Gollihar Houston Methodist

Summary

<u>Summary</u>

- New advances in cryo-EM have enabled higher resolution and higher throughput than ever before
- Techniques such as EMPEM provide valuable insights into polyclonal immune responses to vaccination and infection
- AI/ML combined with high-throughput screening is allowing accelerated development of vaccine antigens for important human pathogens

Acknowledgements

McLellan Laboratory
Jory Goldsmith
Ching-Lin Hsieh
Ling Zhou
Nianshuang Wang
Daniel Wrapp
Patrick Byrne
Christy Hjorth
Nicole Johnson

Ryan McCool

Cory Acreman

Institute for Machine LearningAdam Klivans
Danny Diaz

Houston MethodistJimmy Gollihar