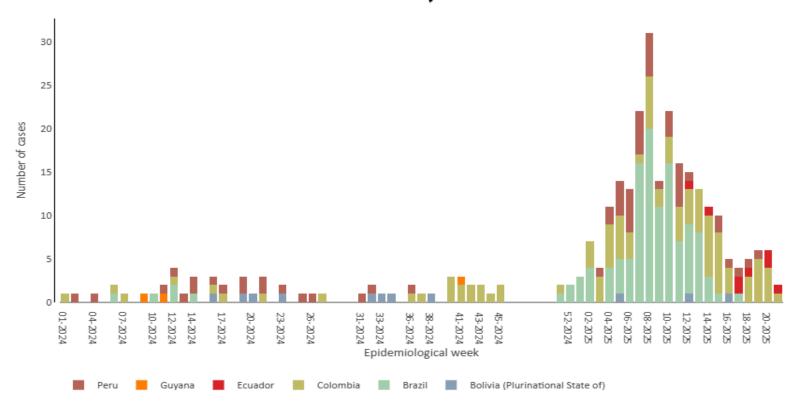
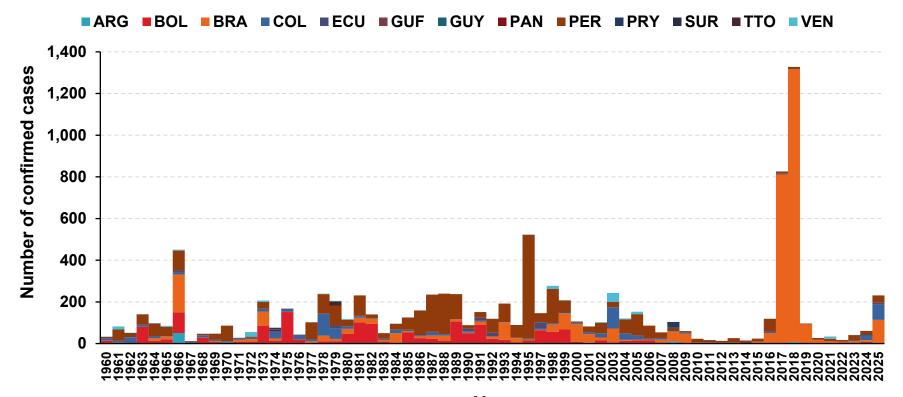
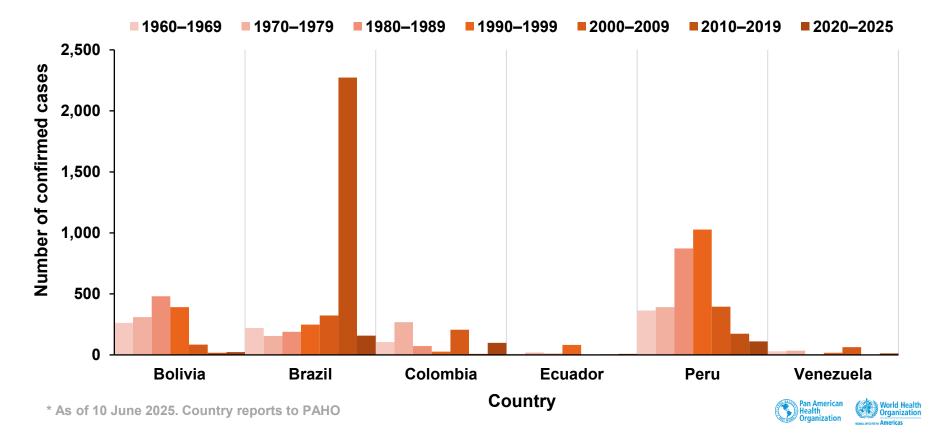
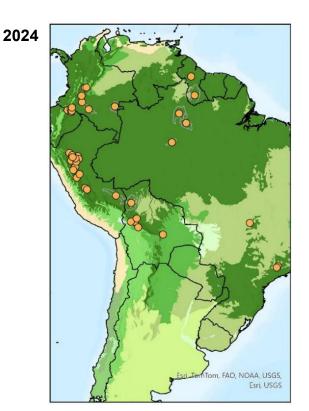
Yellow fever in the Americas: Update & perspective

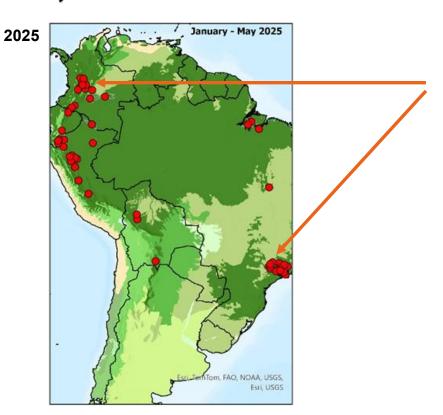

Dr. Andrea Vicari Head, Infectious Hazard Management Unit 11 June 2025


Epidemic curve of confirmed human yellow fever cases The Americas, 2024–2025*

Confirmed human yellow fever cases, by country—The Americas, 1960–2025*

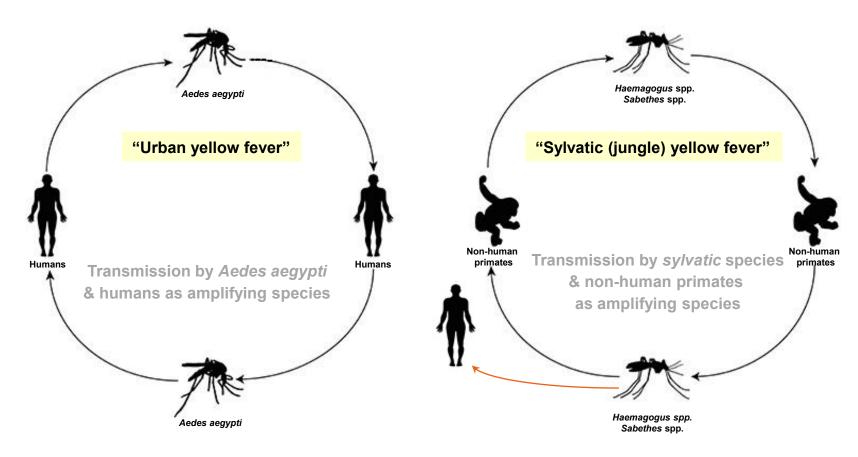


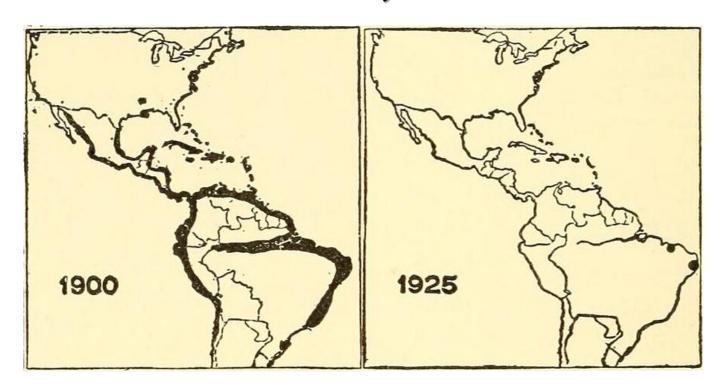




Confirmed human yellow fever cases, by country & decade—The Americas, 1960–2025*

Geographical distribution of confirmed human yellow fever cases—The Americas, 2024–2025*





Yellow fever virus transmission cycles—The Americas

A quarter century of yellow fever control The Americas, 1900–1925

Alleged urban yellow fever outbreaks in the America during the last 80+ years

- · Rio de Janeiro, Brazil, 1928-1929
 - Likely the last urban epidemic, 738 cases (478 deaths) over 17 months.
- Senna Madureira, Acre, Brazil, 1942
 - Likely the last urban outbreak, 3 cases.
- Western side, Trinidad, 04–10/1954
 - In August, a case in Port-of-Spain. "This is the only proven urban case in the present outbreak," among a total of 15 confirmed cases.
- Santa Cruz, Bolivia, 12/1997–06/1998 b
 - 6 cases, 5 deaths
- San Pedro (metropolitan area of Asunción), Paraguay, 01–03/2008 ^c
 - 9 cases, 3 deaths

Downs, PASB Yellow fever conference, Oct. 1955, pp. 582–589) | b Van der Stuyft et al., Lancet 1999, 353:1558–1562 | c PAHO, Epidemiological Bulletin 2008, 27(1)

1907

"Fiebre amarilla de los bosques"

"Yellow fever of the woods"

Año XXVIII

V

Noviembre de 1907

N.º 331

REVISTA MEDICA DE BOGOTA

Organo de la Academia Nacional de Medicino

REDACTORES

1.º, Dr. José María Lombana Barreneche-2.º, Dr. Juan David Herrera.

Trabajos Originales

INFORME

PRESENTADO AL SINDICATO DE MUZO POR LA MISIÓN ENCAR-GADA DE ESTUDIAR LA EPIDEMIA DE FIEBRES OBSERVADA EN LA MINA EN LOS MESES DE MAEZO Y ABRIL DE 1907

Bogotá, Mayo 14 de 1907.

Sr. Presidente del Sindicato de las minas de Muzo-E. S. D.

Muy estimado señor:

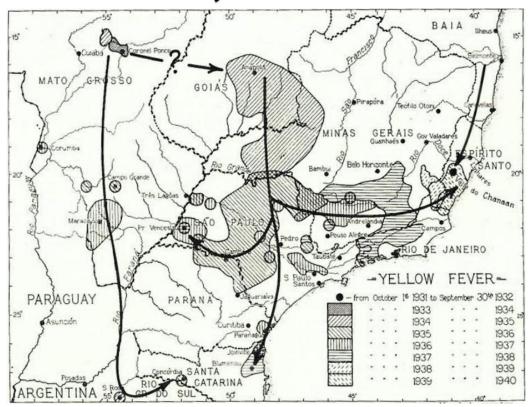
Acompaño á la presente el informe en que se exponen las conclusiones à que llegó la Misión encargada por ese Sindicato de estudiar la epidemia de fiebres de Muzo. Comprende él el estudio que nos sirvió de base para determinar la naturaleza de las fiebres é indicar las medidas que deben tomarse para su profilaxis y su tratamiento.

En esta Misión fui acompañado por los Sres. Jorge Martínez S. y Gabriel Toro. Me es muy grato expresarles aquí mi reconocimiento por la consagración con que me ayudaron en este estudio, y manifestar á ese Sindicato que á ellos debo en gran parte los resultados obtenidos.

Doy de nuevo las gracias á la empresa por la eficaz ayu da que me prestó en la consecución de los elementos para nuestros trabajos y por la solicitud con que ha atendido á las indicaciones que hemos hecho.

Una vez que llegámos á la mina encontrámos en ellá la mejor acogida por parte de la Dirección, y tauto en nombre de mis compañeros como en el mío propio maniflesto mi agrade cimiento á los Sres. Francisco Bestrepo y Andrés Vargas, por las atenciones que nos prodigaron y por las facilidades que nos proporcionaron para las investigaciones que emprendimos.

Revista Médica


xxviii—7

YELLOW FEVER WITHOUT AËDES AEGYPTI. STUDY OF A RURAL EPIDEMIC IN THE VALLE DO CHANAAN, ESPIRITO SANTO, BRAZIL, 1932.*

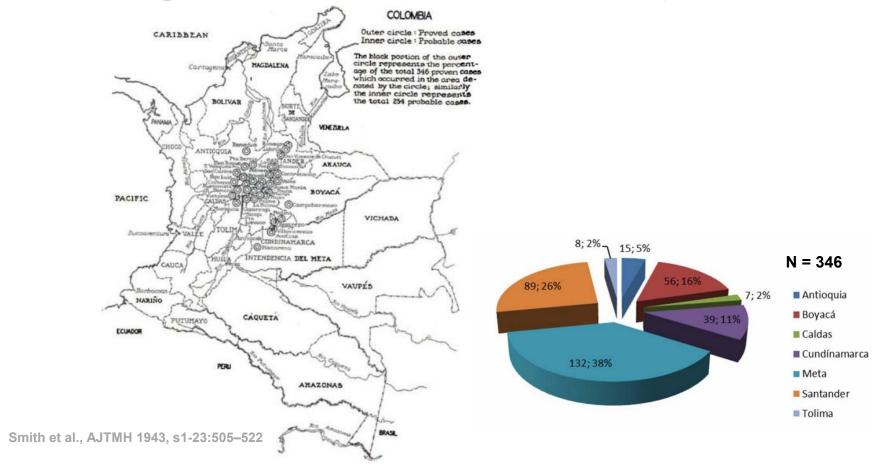
By

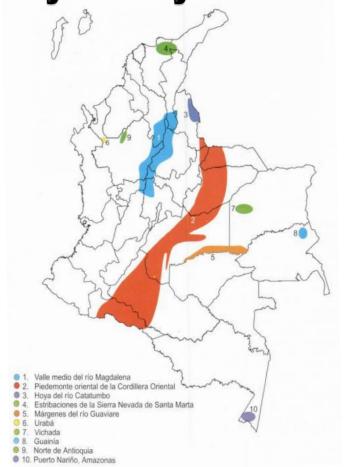
F. L. SOPER, H. PENNA, E. CARDOSO, J. SERAFIM, Jr., M. FROBISHER, Jr., and J. PINHEIRO.

Probable route of yellow fever epizootic Brazil, 1934–1940

Environmental conditions conducive to spread & transmission of yellow fever virus

Ecological corridors


Urban & peri-urban edge habitat



Probable yellow fever cases—Colombia, 1934–1942

Distribution of sylvatic yellow fever—Colombia

Yellow fever vaccination strategies—The Americas

Routine vaccination

- Children aged 12 months in enzootic areas
- Travelers to areas at risk (>10d before travelling)

Preventive campaigns

- Prioritization of high-risk areas
- Analysis by cohort to estimate target population
- Microplanning to optimize coverage

Outbreak response & use of fractional dose

- Identification of groups at risk
- Use of fractional doses (0.1 ml) in specific cases
- Temporary suspension of vaccination in non-priority areas

Yellow fever vaccine coverage, by country, 2014–2024

Países	Años										
	2024	2023	2022	2021	2020	2019	2018	2017	2016	2015	2014
Argentina		57	74	74	81	89	79	74	72	60	51
Bolivia	66	67	67	71	72	77	84	82	89	88	73
Brasil	73	70	61	58	57	60	58	44	43	99	102
Colombia	90	86	75	86	84	90	87	88	77	54	92
Ecuador	83	96	70	70	79	84	85	84	96	78	86
Guyana	100	102	102	94	95	94	96	100	99	100	100
Panamá		59	80	73	69	107	85	92	81	60	69
Paraguay	83	81	54	52	65	70	80	79	80	71	63
Perú	64	61	52	61	50	57	75	62	65	67	65
Suriname	86 [*]	93	94	79	62	75	81	98	79	86	79
Trinidad y Tabago	94	90	93	91	89	98	88	95	85	91	96
Venezuela	71	56	47 [*]	76	82	80	35	83	84	85	82

Balanced response that integrates several components

- Coordination
- Epizootic surveillance—as early warning system & input to modeling ecological pathways
- Entomological, entomovirological, virologic & epidemiological surveillance
- Clinical management, referral pathways, & infection prevention and control
- Mop-up vaccination & vaccine stock management
- Risk communication
- Contingency planning for urban transmission, including for Aedes aegypti control

Final considerations

- "Urban yellow fever" has not caused any impact in the Americas for nearly 100 years. Still, its risk exists.
- Periodic reactivation of sylvatic transmission cycles—whether in the Amazonas or outside it—does occur. It drives our perception of a "resurgence."
- "Sylvatic yellow fever" can cause a significant impact.
- While vaccination is certainly a key action, it must be integrated within a balanced response with several components.

Thank you

