Drug-Resistant TB
Sequencing Globally:
WHO Perspectives &
Resources

Patricia Hall-Eidson, PhD MS
Diagnostics Team Lead
Global Programme on TB & Lung Health

The Spectrum of TB: An Airborne Bacterial Disease

Symptoms	Begin and Progress	
Infectious	Begins and Progresses	
Tests	Infection Screening Disease & Drug Resistance Monitoring	g
Treatment	TB Preventive TB & Drug-Resistant TB	

Tuberculosis: Leading Cause of Infectious Death Globally

WHO Global TB Report

- > 1/4 World has been infected
- > ~10.8 Million Incident cases
- > 1.25 Million Deaths
- >1.5 Million Drug-resistant cases
 - <50% diagnosed</p>
- ➤ Drug Susceptibility Testing:
 - 79% tested for rifampicin resistance
 - 55% tested for fluoroquinolone resistance
 - Low rates resistance testing to new TB drugs

Estimated Number of People who Developed Rifampicin-Resistant/ Multidrug-Resistant TB in 2023*

Advances in TB Treatment: New Drugs & Shorter Durations

Type of TB Disease	Regimen(s)*	Drugs	Duration	
	2HRZ(E)/4HR	RIF, INH, PZA, EMB	6 months	
Drug-Susceptible (First-Line)	2HRZ(E)/ 2HR	RIF, INH, PZA, EMB	4 months	
(i iist Liiic)	2HPMZ/ 2HPM	RPT, INH, PZA, MOX	4 months	
INH-Resistant (RIF-S)	"Mono-INH"	RIF, LEV, PZA, EMB	6 months	
MDR/RR & Pre-XDR	BPaL(M)	BDQ, PTD, LZD, MOX	6 months	
MDR/RR (+/-) Pre-XDR	BDLLfxC	BDQ, DLM, LZD, LEV, CFZ	6 months	
MDR/RR (-) Pre-XDR	"All Oral"	BDQ, LZD, PZA, MOX BDQ, LZD, PZA, LEV, CFZ BDQ, LZD, PZA, DLM, LEV	9 months	
	"Longer"	BDQ, LZD, CS, MOX/LEV + CFZ	>9 months	

^{*} Regimen selection should always consider disease severity, patient/family preference, and access and cost of drugs. Regimens and drug components may vary based on prevalence of resistance, age, and HIV status, among other factors.

Expanding Landscape of WHO-Recommended DR-TB Diagnostics

Diagnostic Class	Resistance Detection										Time			
Diagnostic Class		INH	PZA	ЕМВ	LEV	MXF	LZD	PTD*	DLM	CS	CFZ	AMK	SM	to Result
Low-Complexity Automated Nucleic Acid Amplification Tests (NAATs)	~	~			~	~						~		2h
Moderate-Complexity Automated NAATs	/	/												4-8h
Line Probe Assays/ HC-rNAAT	/	/	/		/	/						V		1-2d
Liquid & Solid Culture-based Drug Susceptibility Tests	~	~	~	/	~	~	/	~	/	~	~	/	~	3 - 12+wks
Whole Genome Sequencing	/	/	/	/	/	/	/		/		/	/	/	3+ wks
Targeted Next Generation Sequencing	~	~	~	/	~	~	~		~		~	~	~	1-2d

Genomic sequencing for the detection of DR-TB is:

- ➤ More rapid and nearly as comprehensive as the phenotypic DST gold standard
- > Adaptable, scalable, and can provide resistance results across various treatment regimens from a single primary sample

Timeline for WHO DR-TB Sequencing Guidance

2018

The use of next-generation sequencing technologies with drug resistance in Mycobacterium tuberculosis complex: technical guide for drug susceptibility testing of medicines 2021

2022

2023

2024

2025

Initial Guidance: NGS for DR-TB Surveillance

Resulted in NGS capacity for detection of DR-TB that could benefit disease control programs in advance of result use for clinical care

Map of Sequencing Use for TB Drug Resistance Surveys

- ✓ In 2024, 21 surveys were planned, ongoing, undergoing analysis, or recently completed
- ✓ 14 of 21 (74%) of drug resistance surveys were planning to use, using, or used NGS locally or remotely by a WHO Supranational Reference Laboratory (SRL)

NGS Capacity in the WHO TB SRL Network

By 2024, 22/24 SRLs reported having NGS testing capacity for research, surveillance, and/ or clinical care

WHO Catalogue: Guides R&D and Standardizes Interpretation

https://tbsequencing.who.int/overview

2023 WHO Recommendations for Clinical Use of tNGS

New TB Diagnostic Class: Targeted Next Generation Sequencing

Uses massively parallel sequencing to detect resistance to TB drugs, starting from a processed clinical sample and ending with an enduser report that relates detected Mycobacterium tuberculosis mutations to the presence (or absence) of drug resistance, based on the interpretation of a standard catalogue of mutations.

The products and drugs for which eligible data met the class-based performance criteria are listed below:

Deeplex® Myc-TB (Genoscreen, France): rifampicin, isoniazid, pyrazinamide, ethambutol, fluoroquinolones, bedaquiline, linezolid, clofazimine, amikacin and streptomycin

Ampore Diagnostics, United Kingdom): rifampicin, isoniazid, fluoroguinolones, linezolid, amikacin and streptomycin

TBseq® (Hangzhou ShengTing Medical Technology Co., China): ethambutol

Cost-effective depending on setting and context Acceptable and implementable, despite inherent complexity

Among people with bacteriologically confirmed pulmonary TB

Accurate for drugs used to treat drug-susceptible TB.

Pooled sensitivities of \geq 95% for rifampicin, isoniazid, moxifloxacin and ethambutol, 94% for levofloxacin and 88% for pyrazinamide.

Specificity ≥ 96% for all drugs.

Among people with bacteriologically confirmed rifampicin-resistant pulmonary TB

Accurate or acceptable for drugs used to treat DR-TB.

Accurate for isoniazid, levofloxacin, moxifloxacin, pyrazinamide and ethambutol (pooled sensitivities \geq 95%).

Acceptable for bedaquiline (68%), linezolid (69%), clofazimine (70%), amikacin (87%) and pyrazinamide (90%).

Specificity \geq 95% for all drugs except streptomycin (75%).

The Future for Genomic Sequencing of DR-TB

- ☐ New WHO Guidance & Recommendations for Expanded Resistance Testing
 - ✓ Harnessing Advances: Mutations Catalogue 3rd Edition + Updated TB Sequencing Portal
 - ✓ Supporting Practical Use: Manual for Clinical Use (validation/ verification, clinical reporting)
 - ✓ <u>Increasing Knowledge</u>: WHO Academy eCourse on TB Drug Susceptibility Testing, including tNGS
 - ✓ <u>Ensuring Evidence-Based Testing</u>: Assessing New/ Updated Solutions for WHO Recommendation
 & Prequalification
- ☐ Increased Sequencing Use to Guide Clinical Management of DR-TB
 - ✓ Cross-sharing of enablers and barriers from high income and early implementer countries
 - ✓ Review of service delivery models that address TB-specific biosafety considerations
- ☐ Reduced Cost of Required Equipment and Reagents
 - ✓ Negotiation of DR-TB reagent and commodity pricing
 - ✓ Coordinated approaches to instrument procurement, maintenance, and use

Thank You

