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This report is the result of an extensive collaborative effort and reflects shared agreement of the terminology between WHO  
and the esteemed four public health agencies: 

- Africa Centres for Disease Control and Prevention; 

- Chinese Center for Disease Control and Prevention; 

- European Centre for Disease Prevention and Control; 

- United States Centers for Disease Control and Prevention;

This agreement underlines our collective commitment to moving forward together in implementing these statements. 
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Terminology used to describe the transmission of pathogens through the air varies across scien-
tific disciplines, organizations and the general public. While this has been the case for decades, 
during the coronavirus disease (COVID-19) pandemic, the terms ‘airborne’, ‘airborne trans-
mission’ and ‘aerosol transmission’ were used in different ways by stakeholders in different sci-
entific disciplines, which may have contributed to misleading information and confusion about 
how pathogens are transmitted in human populations. 

This global technical consultation report brings together viewpoints from experts spanning 
a range of disciplines with the key objective of seeking consensus regarding the terminology 
used to describe the transmission of pathogens through the air that can potentially cause infec-
tion in humans. 

This consultation aimed to identify terminology that could be understood and accepted by 
different technical disciplines. The agreed process was to develop a consensus document that 
could be endorsed by global agencies and entities. Despite the complex discussions and chal-
lenges, significant progress was made during the consultation process, particularly the consen-
sus on a set of descriptors to describe how pathogens are transmitted through the air and the 
related modes of transmission. WHO recognizes the important areas where consensus was not 
achieved and will continue to address these areas in follow-up consultations.

The scope of what type of pathogens were covered in this consultation and the resulting 
descriptors used in this document are as follows:

• Pathogens, contained within a particle (known as ‘infectious particles’), that travel
through the air, when these infectious particles are carried by expired airflow (they
are known as ‘infectious respiratory particles’ or IRPs), and which enter the human
respiratory tract (or are deposited on the mucosa of the mouth, nose or eye of another
person) and;

• Pathogens from any source (including human, animal, environment), that cause
predominantly respiratory infections (e.g., Tuberculosis [TB], influenza, severe acute
respiratory syndrome [SARS], Middle East respiratory syndrome [MERS]), but as
well as those causing infections involving the respiratory and other organ systems
(e.g. COVID-19, measles).

Executive summary
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The following descriptors and stages have been defined by this extensively discussed consultation 
to characterize the transmission of pathogens through the air (under typical circumstances): 

• Individuals infected with a pathogen, during the infectious stage of the disease (the
source), can generate particles containing the pathogen, along with water and res-
piratory secretions. Such particles are herein described as potentially ‘infectious
particles’.

• These potentially infectious particles are carried by expired airflow, exit the infec-
tious person’s mouth/nose through breathing, talking, singing, spitting, coughing or
sneezing and enter the surrounding air. From this point, these particles are known as
‘infectious respiratory particles’ or IRPs.

• IRPs exist in a wide range of sizes (from sub-microns to millimetres in diameter).
The emitted IRPs are exhaled as a puff cloud (travelling first independently from air
currents and then dispersed and diluted further by background air movement in the
room).

• IRPs exist on a continuous spectrum of sizes, and no single cut off points should be
applied to distinguish smaller from larger particles, this allows to move away from
the dichotomy of previous terms known as ‘aerosols’ (generally smaller particles) and
‘droplets’ (generally larger particles).

• Many environmental factors influence the way IRPs travel through air, such as ambi-
ent air temperature, velocity, humidity, sunlight (ultraviolet radiation), airflow distri-
bution within a space, and many other factors, and whether they retain viability and
infectivity upon reaching other individuals.

The descriptor ‘through the air’ can be used in a general way to characterize an infectious dis-
ease where the main mode of transmission involves the pathogen travelling through or being 
suspended in the air. This has similarity with other public health descriptors of infectious dis-
eases, such as ‘waterborne’ and ‘bloodborne’, that refer to the main medium through which a 
specific disease is transmitted, and as commonly understood by the scientific, clinical, public 
health communities and the general public.

The descriptor ‘transmission through the air’ can be used to describe the mode of trans-
mission of IRPs through the air. 

Under the umbrella of the ‘through the air’, two descriptors can be used: 

• ‘Airborne transmission/inhalation’: Occurs when IRPs expelled into the air as
described above and enter, through inhalation, the respiratory tract of another
person and may potentially cause infection. This form of transmission can occur
when the IRPs have travelled either short or long distances from the infectious
person. The portal of entry of an IRP with respiratory tract tissue during airborne
transmission can theoretically occur at any point along the human respiratory tract,
but preferred sites of entry may be pathogen specific. It should be noted that the dis-
tance travelled depends on multiple factors including particle size, mode of expul-
sion and environmental conditions (such as airflow, humidity, temperature, setting,
ventilation).

• ‘Direct deposition’: Occurs when IRPs expelled into the air following a short-range
semi-ballistic trajectory, then directly deposited on the exposed facial mucosal sur-
faces (mouth, nose or eyes) of another person, thus, enter the human respiratory tract
via these portals and potentially cause infection.

Global technical consultation report on proposed terminology for pathogens that transmit through the air
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Executive summary

Pathogens that can be transmitted to another human via contact transmission (direct contact) 
and not via transmission through the air (e.g. via hands) or indirectly via touching secondary 
objects (fomites e.g. tabletops), or that enter the human body via routes (e.g. open wounds, 
sharps or needle-stick injuries) or pathogens with an environmental reservoir with a predilec-
tion for lungs (e.g., Legionella and melioidosis) are not covered by the included descriptors but 
are referenced for completeness.

This consultation is the first phase of the global scientific debate led by WHO. From which 
the next steps will require further technical and multidisciplinary research and exploration of 
the wider implications of the updated descriptors before any update on infection prevention and 
control or other mitigation measures guidance is issued by WHO.
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Understanding the modes of transmission for any pathogen is essential for developing and 
adapting effective and appropriate public health, clinical, infection prevention and control 
measures to prevent infections and mitigate the spread of that pathogen. 

Key public health and social measures include implementing multiple approaches, such as: 

• case finding;
• separation and/or isolation;
• contact tracing and supported quarantine;
• robust testing;
• physical distancing;
• hand hygiene, mask-wearing;
• delivery of prompt and appropriate treatments;
• environmental cleaning and disinfection;
• ensuring adequate ventilation;
• infection prevention and control measures in health care settings;
• clinical case management. 

All these measures are influenced by an understanding of how, where and when transmission 
of a pathogen occurs and are implemented in a variety of different settings, including for health 
care workers and other occupations in health care settings, usually using a ‘hierarchy of con-
trols’ approach. 

The way pathogens are transmitted is complex and depends on many factors and may be 
classified in different ways. The modes of transmission follow classic epidemiological principles 
and refer to how an infectious agent, which can be pathogenic, can be transferred to another 
person, object, the environment, water, food, insect or animal. In this sense, transmission could 
simply be classified through the various media the infectious pathogens use to move between 
the source and susceptible recipient e.g. bloodborne, waterborne, vector-borne, airborne and 
through the air (1–3). How to measure and quantify the predominant mode of transmission for 
different pathogens that are transmitted through the air remains challenging, particularly for 
newly emerging pathogens. 

One current major issue contributing to this challenge is that the terminology used to 
describe the transmission of pathogens through the air varies significantly across scientific dis-

CHAPTER 1
Introduction
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ciplines, organizations and the general public (4). While this issue has been known for many 
years (4–20), it was brought to the forefront during the COVID-19 pandemic when intensive 
global communications were needed. During the pandemic, the terms ‘airborne’, ‘airborne 
transmission’, ‘droplets’ and ‘aerosols’ were used in different ways, by different stakeholders, 
which contributed to confusion in communicating how this pathogen was transmitted in 
human populations via air (21). Hence, a lack of consensus on what exactly is meant by ‘air-
borne’, ‘airborne transmission’ has highlighted the need for better alignment of these terms 
across disciplines, agencies and pathogens.

In 2020, the WHO COVID-19 leadership team consulted with other major public health 
agencies and agreed on the need to reassess the use of terminology relating to transmission of 
pathogens through the air. As a starting point, and in order to ascertain whether significant and 
unresolved variation in the definitions existed between different scientific disciplines, the WHO 
Health Emergencies Programme, together with the Science Division’s Rapid Review Group, 
conducted a scoping literature review of the existing definitions of airborne transmission of 
pathogens in 2021. This review (manuscript under preparation) found considerable variation 
in the scope of the term ‘airborne transmission’, including differences in particle size limits, 
duration in the air, distance travelled, method of dispersal and other properties. 

In November 2021, WHO began the process of convening a global technical consultation 
with the aim to resolve inconsistencies in terminology and seek agreement regarding descrip-
tors and terminology relating to the transmission of pathogens through the air. This consul-
tation report summarizes the areas of consensus reached from the expert discussions on the 
proposed terminology and descriptors to be used.

Global technical consultation report on proposed terminology for pathogens that transmit through the air
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The key objectives of this global technical consultation process were:

• to bring together global experts of various disciplines including (but not limited 
to) experts in epidemiology, microbiology, clinical management, infection preven-
tion and control, bioengineering, physics, air pollution, aerosol science, aerobiology, 
public health and social measures, and social science; and

• to share knowledge and seek a consensus regarding generic terminology and descrip-
tors used to describe the transmission of pathogens through the air that can poten-
tially cause infection in humans.

The aim of the consultation was to:

• identify a language for these terms that can be understood, accepted and eventually 
implemented by all disciplines and experts globally.

The scope of pathogens covered in this consultation and the resulting descriptors contained in 
this document are as follows: 

• Pathogens, contained within a particle (known as ‘infectious particles’), that travel 
through the air and these infectious particles are carried by expired airflow (now 
known as ‘infectious respiratory particles’ or IRPs), which enter the human res-
piratory tract (or are deposited on the mucosa of the mouth, nose or eye of another 
person);

• Pathogens from any source (including human, animal, environment), that cause pre-
dominantly respiratory (e.g., TB, influenza, SARS, MERS) but also those pathogens 
causing infections involving the respiratory and other organ systems (e.g. COVID-19, 
measles). 

To note: 

• Pathogens that are transmitted to another human via contact transmission (direct 
contact), not via transmission through the air (e.g. via hands) or indirectly via 
touching secondary objects (fomites e.g. tabletops), or that enter the human body via 
routes (e.g. via the skin or open wounds, via sharps or needle-stick injuries) or path-
ogens with an environmental reservoir with a predilection for lungs (e.g., Legionella 

CHAPTER 2
Objectives, aim and scope
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and melioidosis) are not covered by the included descriptors but are referenced for 
completeness; 

• For simplicity, the descriptors, figures, tables and other text included in this doc-
ument usually refer to humans only (e.g. ‘person/individual’ rather than the more 
generic term ‘source’, which could be used to refer to environmentally derived patho-
gens) and focus on transmission from, and to, the respiratory tract of humans, rather 
than other ports of entry (e.g. via skin or open wounds); 

• Detailed descriptions of all possible transmission factors, for every known pathogen, 
in all possible settings, were not included in this consultation.  

Global technical consultation report on proposed terminology for pathogens that transmit through the air
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Details of the governance structure and formation of the Technical Consultation Group (TCG) 
can be found in Annex 1. This global technical consultation used a staged approach (see Annex 2), 
with two complementary methods (see Annex 3). This was a multi-agency, multidisciplinary 
initiative, including 41 technical experts and the WHO Secretariat (see Annex 4) selected to 
provide expert evidence and to contribute to open discussions via virtual meetings and submit 
written comments following each draft of the resulting document(s). The members of the full 
TCG were included based on their technical expertise, and to ensure appropriate gender and 
geographical balance. Invitations to join the TCG of experts were approved and issued by the 
WHO Chief Scientist. All consulted experts were assessed for conflicts of interest and asked to 
sign confidentiality agreements, per normal WHO procedures. None of the experts reported 
any conflict considered relevant. Given the high likelihood of substantive disagreement among 
the diverse selected experts, all were encouraged to provide full, frank but respectful contribu-
tions to the consultation discussions via their verbal contributions and written feedback, but to 
aim for overall descriptors that multiple agencies could co-endorse and adopt. 

This technical consultation process was not that of a formally constituted WHO TCG, and 
thus, formal recommendations were not an expected output of the process. As such, compre-
hensive systematic evidence reviews pertaining to every known pathogen were not undertaken. 
Instead, the process aimed to be a starting point for what is anticipated to be difficult and 
complicated discussions on a topic with enormous complexity, which would form the basis for 
common language across disciplines. However, it would likely require further work in order 
to operationalize and implement within pathogen-, discipline- and setting-specific contexts. 

Comments provided during virtual meetings and via written feedback covered an extremely 
wide range of areas relating to the topic. This included mechanisms, modes, settings, pathogen 
specific characteristics, epidemiological factors, source control, host and many other factors 
relating to the transmission of IRPs. 

An informal approach, with unstructured discussion, was used for this consultation, as 
this can enable better articulation of views and opinions rather than using more structured 
approaches (such as the Delphi method, surveys or formal voting). The possibility of having 
strongly dissenting views recorded was offered to members of the TCG. The term ‘consensus’ 
has been used in this document to convey a process whereby these group decision-making 
methods were employed in the consultation to achieve the resulting document. 

CHAPTER 3
Methods and processes
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The lengthy consultation process confirmed how extremely complex and sensitive it is to address 
the objective laid out in this global technical consultation. As anticipated, it was challenging 
to achieve consensus on all aspects of this topic where experts had mutually exclusive and dia-
metrically opposed positions regarding the supporting science, some of which still remain, and 
are summarized in Annex 5.

Despite these hurdles, progress was made to reach a consensus of the overarching termi-
nology of ‘transmission through the air’ with sub-categories of ‘airborne transmission” and 
‘direct deposition’. Importantly, it was agreed by the TCG that Figure 1 is a schematic depic-
tion of current understanding on how pathogens are transmitted through the air, although not 
all organisms employ all the routes shown. There remains some disagreement regarding some 
of the chosen labels and terminology to describe the schematic (see Annex 5 for discussion 
points). To articulate the schematic depiction of Figure 1 in words, the following descriptors 
are proposed to be used to characterize the transmission of pathogens through the air, under 
usual circumstances. 

Figure 1.  Potential modes of transmission of infectious respiratory particles

CHAPTER 4
Outcomes

Source: Developed by A. Manna and L. Bourouiba, adapted from (8, 12, 22, 23).
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Table 1. Features of infectious respiratory particles and descriptors for modes of transmission§

Mode of 
transmission

Typical  
distance from 

the source

Route of  
transfer to 

another human

Respiratory  
tract entry 
mechanism

Respiratory  
tract entry  

portal

Schematic  
depiction

THROUGH THE AIR

Airborne 
transmission/ 
inhalation

Any distance Through the air 
(suspended in air or 
moving via air flows) 

Inhalation Anywhere along the 
respiratory tract

Direct deposition Short Through the air 
(semi-ballistic 
trajectory)

Deposition on the 
mucosa 

Mouth, nose or 
eyes*

CONTACT #

Direct contact Short Not through the air Direct transfer (via 
touch¤, usually with 
hands)

Mouth, nose or eyes*

Indirect contact Any distance Not through the air, 
although IRPs may 
reach an intermediate 
object through the air

Indirect transfer 
(via touching an 
intermediate object)

Mouth, nose or eyes*

* Note that the mucosa of the eyes is not part of the human respiratory tract but are a portal of entry into the respiratory system. 
# Note that this mode of transmission to another human does not involve a ‘through the air’ route but is included here for completeness. Depictions above assume the human(s) on the 

left is/are the infectious person(s) and the human on the right is the recipient of the IRP.
¤Note that ‘touch’ is not through the air transmission but included for completeness and it does not include sharp injuries like needle prick. 
§Source of figures: A. Manna and L. Bourouiba. Based on (8, 12, 23).

3.1 Modes of transmission 
The mode of transmission (Table 1) includes the formation, release, transport and biophysical/
biochemical changes to IRPs that occur when they move away from an infectious individual and 
travel towards another individual. In addition, IRPs may directly deposit on the mouth, nose or 
eye of another individual, and can potentially infect the individual.

Global technical consultation report on proposed terminology for pathogens that transmit through the air
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Chapter 4 – Outcomes

During the infectious stage of the disease, an infected person can generate particles containing 
the pathogen, along with water and respiratory secretions. Such particles are here described 
as ‘infectious respiratory particles’ or IRPs (24–36). These IRPs are then carried by expired 
airflow, exit the infectious person’s mouth and/or nose when they breathe, talk, sing, spit, 
cough or sneeze and are released into the surrounding air. The IRPs exist in a wide range of 
sizes (from sub-microns to millimetres in diameter) (22, 25, 32, 37–55) and travel in the air in 
a turbulent puff cloud (exhaled mixture of gases from the lungs and respiratory particles) (8, 
23). The IRPs are carried by the puff cloud and remain concentrated until the cloud reduces 
sufficiently in momentum to enable IRP dispersal by the background air movement. 

There are many factors that can influence the particle distribution, spread and subsequent 
effect on an individual of exhaled IRPs (depicted in Figure 1):

• Host: Immune status of the host, including prior infection, vaccination, status of an
individual’s innate, cellular and humoral immunity;

• Pathogen characteristics: The ability of the pathogen to remain infective after
suspension in the air and the dose-infection relationship for the pathogen after it
deposits on a surface in the host’s respiratory tract;

• Particle size: IRPs are formed with a continuous spectrum of aerodynamic sizes,
and no single cut off points should be applied to distinguish smaller from larger
particles, this allows to move away from the dichotomy of what have previously been
known as ‘aerosols’ (generally smaller particles) and ‘droplets’ (generally larger par-
ticles) (8, 12, 56, 57). Nonetheless, there are usually more numerous smaller, com-
pared to larger, particles;

• Speed of expulsion: The speed of expulsion can vary depending on the force of
expiration and other factors relating to the surrounding conditions (8, 12, 14, 23, 55,
58–67). Because of dilution, the concentration of IRPs is higher closer to the source
(where the IRPs exit the infectious person’s respiratory tract) and become less con-
centrated as they disperse randomly further away from the source;

• Influence of gravity: Under the influence of gravity, after being expelled, larger IRPs
rapidly fall, eventually reaching the ground or another surface, usually within 1-2
metres of where they were emitted from the infectious person’s respiratory tract (13,
68, 69);

• Mode of expulsion: Activities resulting in more forceful expiration (i.e., larger total
momentum), such as sneezing, coughing, loud singing and shouting, are known to
propel IRPs further than 1-2 metres (8, 12, 23);

• Evaporation: Following emission from the mouth and/or nose, IRPs of all sizes
undergo evaporation of some of their water content. IRPs decrease in size and
weight at various rates in a common environment. Evaporation rate has an impact
on how long particles remain in the air and how far they may be transferred before
settling on a surface. The smaller the particle, the longer it is likely to remain in the
air, and the further it is likely to travel;

• Environmental conditions: In addition to the above factors for transmission, the
ambient air temperature, sunlight, humidity, airflow and size, occupancy and use of
the space where IRPs are expelled impact the infectivity, duration, speed of trans-
mission and distance travelled of IRPs (23–25, 29, 33, 48, 54, 55, 62, 66, 70–87);

• Concentration of IRPs: With increasing distance from the source, dilution with
ambient air increases and concentrations of IRPs decrease. Concentrations are also
affected by ambient airflows from ventilation systems. Concentrations can increase
over time if ventilation is inadequate (88–90).
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After IRPs are emitted from an infectious person, they progressively diminish in infectivity over 
a time frame specific to the pathogen, either due to decrease in an organism’s infectivity with 
time or more dispersion and dilution leading to lower concentrations of particles in the air at 
any given position. The modes in which IRPs then travel to, enter, and can potentially infect 
another individual can broadly be described as occurring in the following three ways (depicted 
in Figure 1 and Table 1): 

1. i) Airborne transmission/inhalation: Occurs when IRPs expelled into the air (as 
described above) and enter, through inhalation, the respiratory tract of another person. 
This form of transmission can occur when the IRPs have travelled either short or long 
distances from the infectious person (28, 37, 41, 43, 53, 63, 84, 91–96). The portal of entry 
of an IRP with respiratory tract tissue during airborne transmission can theoretically 
occur at any point along the human respiratory tract, but preferred sites of entry may be 
pathogen specific. It should be noted that the distance travelled may depend on multiple 
factors including particle size, mode of expulsion and environmental conditions (such as 
airflow, humidity, temperature, setting, ventilation, etc.).

2. ii) Direct deposition: Occurs when IRPs are expelled into the air following a short-range 
semi-ballistic trajectory, then are directly deposited on the exposed facial mucosal sur-
faces (mouth, nose or eyes) of another person, thus, entering the human respiratory tract 
via these portals and potentially causing infection (38, 41, 42, 47, 48, 52–54, 58, 62, 67, 72, 
76, 84, 95, 97–106).

3. iii) Contact transmission (added for completeness): Contaminated surfaces are created 
when IRPs expelled into the air settle on a surface, or when an infected person transfers 
infectious respiratory secretions by firstly touching their own mouth, nose or eyes and 
then touching a surface or shaking hands (25, 34, 42, 48, 54, 58, 72, 84, 97, 98, 107, 108). 
Infectious pathogens on the contaminated surfaces are then transferred to another person 
who touches that contaminated surface and then their own mouth, nose or eyes. This is 
commonly known as indirect contact transmission. In addition, direct contact transmis-
sion can occur when an infectious person directly transfers infectious pathogens from 
their own respiratory tract, not via IRPs, to another person by being in direct contact 
with that person (e.g. via a handshake), who then directly transfers the IRPs into their 
own mouth, nose or eyes. This form of transmission does not directly involve the trans-
mission of pathogens to humans through the air, so is not considered part of the ‘through 
the air’ descriptors covered by this document, but is included here for completeness (see 
also Figure 1, Table 1). 

3.2 The term ‘through the air transmission’
The descriptor ‘through the air’ can be used in an overarching way to characterize an infectious 
disease where transmission involves the pathogen travelling through or being suspended in the 
air. This has similarity with other public health descriptors of infectious diseases, such as ‘water-
borne’ and ‘bloodborne’, which refer to the main medium through which a specific disease is 
transmitted and is commonly understood by the general public. However, the medium alone 
does not address the factors of time and distance over which the air remains infectious, and 
those modifiers will be necessary for the phrase to be useful for public health implementation, 
which needs to be part of future research.

The phrase ‘transmission through the air’ can be used to describe the transmission of IRPs 
through the air, via either airborne transmission/inhalation or direct deposition modes (or 

Global technical consultation report on proposed terminology for pathogens that transmit through the air
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other labels matching equivalent descriptions) as outlined above. This can therefore include the 
transmission of IRPs on a spectrum of sizes, over both short and long distances. See Figure 1 
and Table 1 for schematic descriptions of these modes of transmission (and other related trans-
mission modes for completeness). 

3.3 Exposure and its relationship to infection 
Exposure of pathogens through the air is a physical phenomenon in which pathogens released 
from the respiratory tract of an infectious person end up in the respiratory tract of another. 

Exposure does not guarantee successful infection of the susceptible host, as infection is an 
event that can only occur after the expelled IRPs enter the respiratory tract, come into contact 
with the respiratory tissues, followed by multiplication of the infectious pathogens within a 
susceptible person – thus, the full chain of events and conditions that comprises transmission. 
There are a multitude of complex factors that influence whether a susceptible person becomes 
infected, including biological characteristics of the pathogen and the particles it is contained 
within, immune responses in the susceptible host, concentration of microbes in the IRP, dura-
tion of exposure and environmental factors. This document does not provide detailed informa-
tion on these complex factors that can ultimately result in infection. 

3.4 Some factors affecting ‘through the air’ transmission of 
IRPs and infection risk

As mentioned, many factors can affect the viability, infectivity and virulence, and concentration 
of expelled IRPs and contribute to the risk of infection and disease in another person. 

Numerous mitigation measures can reduce the risk of pathogens that transmit through 
the air; distancing, masking, adequate ventilation/dilution and airflow pattern within indoor 
spaces should be considered to help mitigate the risk of airborne transmission of IRPs. This is 
because the transmission of IRPs is more likely to occur indoors than outdoors because the 
opportunity for dilution of IRPs in the surrounding air is almost always greater outdoors. An 
example of recent initiatives aiming to estimate the risk of airborne transmission indoors is the 
‘Indoor Airborne Risk Assessment’ in the context of SARS-CoV-2 (109). This risk assessment 
tool uses detailed relevant components, including:

• the emission rate (number/volume of IRPs exhaled by an infectious person in a given 
time) (41, 52, 75, 77, 87);

• the removal rate (total number/volume of IRPs removed from the air in a given time 
by ventilation or deposition or inactivation) (42, 60, 63, 77, 84, 110, 111); 

• Exposure (difference/balance between the emission rate and the removal rate and the 
exposure time) (35, 44, 81, 110, 112–115, 48, 50, 54, 60, 63, 65, 71, 76);

• the administered dose (dose of IRPs which are actually retained and to which another 
person is exposed) (25, 41, 48, 50, 59, 62–65, 71–75, 77, 80, 81, 83, 111–113, 116–119);

• the resulting probability and risk of infection (taking into account the administered 
dose, the exposed person’s susceptibility to infection, severity of the resulting disease, 
the pathogen specific transmissibility characteristics, and other risk and host factors) 
(41, 108, 120–125).

Detailed descriptions of the interplay between these complex factors for specific pathogens, in 
specific settings, are not within the scope of this document. 

Chapter 4 – Outcomes
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It is important to note that different pathogens will have different predominant, or mixed, 
modes of transmission, including through the air transmission, which require detailed discus-
sions with relevant expert groups to determine appropriate mitigation strategies. In addition 
to mode of transmission, these discussions will include the epidemiologic and virologic char-
acteristics of the pathogens, the degree or severity of illness caused, the impact and burden on 
health care systems, and other factors, thus transmission pathways alone are not sufficient to 
indicate which mitigation strategies are chosen. The development of evidence-based guidance, 
transmission prevention and mitigation measures will need to be tailored differently for dif-
ferent pathogens via different routes and in different settings. In addition, pathogens vary in 
their virulence, treatability, frequency and potential impact on different hosts in different set-
tings. Hence, pathogen- and setting-specific guidance regarding mitigation measures, includ-
ing infection, prevention and control (IPC) guidance, is needed, but is not within the scope of 
this document.

3.5 Immediate practical implications
The updated terminology no longer includes a cut off of particle size, but rather a continuum of 
particle sizes of IRPs. These will have practical implications for various technical disciplines. 
For example, in IPC, the goal is to prevent and/control microbial transmission. Control includes 
both limiting the spread of infection and limiting the morbidity and mortality resulting from 
infection. To prevent or limit the spread of infection, exposure must be addressed, prioritizing 
interventions according to the severity of the resulting diseases. This means that for the same 
transmission mode, different prevention and control measures may be selected, depending on 
factors relating to the infectious agent, source, environment and host. There must be a clear 
understanding that when describing transmission of pathogens, this must work backwards 
from factors affecting infection risk, not just forwards from source generation and infectious 
particle characteristics, such as their concentrations, size and aerobiological properties. 

There is NO suggestion from this consultative process that to mitigate the risk of short-
range airborne transmission full ‘airborne precautions’1 (as they are currently known) should 
be used in all settings, for all pathogens, and by persons with any infection and disease risk 
levels where this mode of transmission is known or suspected (126). But conversely, some sit-
uations will require ‘airborne precautions’. This would clearly be inappropriate within a risk-
based infection prevention approach where the balance of risks, including disease incidence, 
severity, individual and population immunity and many other factors, need to be considered, 
inclusive of legal, logistic, operational and financial consequences that have global implications 
regarding equity and access. 

Additionally, the new term of ‘direct deposition’ is akin to the existing ‘droplet transmis-
sion’ mode, but without any specific particle size designation. While further understanding of 
this form of transmission is elucidated, for pathogens suspected or known to transmit via this 
mode, the existing ‘droplet precautions’ should continue to be used to prevent direct deposition 
of respiratory particles, but personnel may still be vulnerable to infection via airborne transmis-
sion/inhalation if the pathogen can also transmit via this mode. Similarly, for transmission via 
‘contact’ mode, existing precautions known as ‘contact precautions’ should continue to be used. 

Global technical consultation report on proposed terminology for pathogens that transmit through the air
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a mask when appropriate.
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Most importantly, while discussions during the consultation were based on the available 
best science, it was agreed it was important to balance scientific insights with availability, access, 
affordability and other practical realities to minimize health inequity and avoid potential con-
sequences such as the ability to access PPE. 

The implementation of the terminology on transmission through the air and all other 
modes of transmission will require further empirical multidisciplinary research and an evi-
dence-based review process. Terminology of the modes of transmission may have ramifica-
tions on current measures and recommendations in health care settings, as well as in others 
including, but not limited to, educational settings, transport and workplaces. Many diverse 
disciplines will need to be bought together to consider the implications for specific pathogens, 
for nonspecific infection control measures, such as good hygiene practices, and when the modes 
of transmission are not known at the time. 

3.6 Key research gaps and next steps 
Physical science studies have emphasized the importance of understanding the movement of 
particles through the air in order to design potential interventions to lower the risk of infec-
tion. However, studies that measure infection and the impact of mitigation interventions for 
specific pathogens are challenging as the ability to design and conduct clinical trials, or other 
study types, is highly affected by the enormous heterogeneity of factors regarding the patho-
gens themselves (and their characteristics), the settings where pathogens are transmitted, and 
the individuals who eventually become infected by them. Well-designed research studies are 
needed to inform mitigation strategies.

Guidance for infection prevention depends on a wide range of factors that need to be con-
sidered by health care experts and scientists particularly in emergent situations. However, 
there remains a clear and urgent need for the design and conduct of further inter–disciplinary 
research to build robust evidence regarding transmission mechanisms and infection preven-
tion measures and strategies. Future research should include animal models, human challenge 
experiments, as well as other observational and interventional study designs.

An important next step is to consider how the definitions described here will be applied to 
wider evidence base and risk assessment processes, to inform wider IPC and clinical research, 
epidemiology evidence base and future IPC measures as well as for engineering, physics research 
and aerosol science. Behavioural research is important for implementing acceptance, adoption 
and action of IPC and public health measures. 

Chapter 4 – Outcomes
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This global technical consultation process was a concerted effort of many influential and expe-
rienced experts. Despite the challenges faced to arrive at some degree of consensus on such 
sensitive issues and terminology, progress was made. WHO recognizes the concerns and the 
non-agreed aspects raised and will continue to address these in future work.

Reaching consensus on the term ‘infectious respiratory particles’, moving away from a strict 
dichotomy of particle sizes, and accepting that smaller IRPs can be transmitted at both short- 
and long-range depending on several influencing factors, are all major achievements. Consid-
eration for the use of the phrase ‘transmission through the air’ as an umbrella term to describe 
the transmission of IRPs through the air via either airborne transmission or direct deposition 
modes simplifies a highly complex issue but will require specific socialization and training to 
be understood by health care workers and the general public. 

Such a shift in the use of this terminology in this way is not without its consequences. 
Hence, the descriptors included in this document should be seen as a starting point for further 
evidence review, urgent and detailed discussions and, multidisciplinary research with associ-
ated funding to address pathogen-, discipline- and/or setting-specific implementation of the 
suggested changes. 

CHAPTER 5
Conclusions 
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Annex 1.  Governance structure
Dr Soumya Swaminathan, the WHO Chief Scientist, was the Convening Lead for this tech-
nical consultation until her departure from WHO in December 2022, after which, this role 
was assumed by the acting Chief Scientist, Dr John Reeder, then from 8 May 2023, by the new 
incoming Chief Scientist, Dr Jeremy Farrar. The Chief Scientist was supported by a WHO Sec-
retariat who operationalized the project. 

A project Working Group (WG) was convened, consisting of 10 representatives from key 
agencies including the United States CDC, Africa Centres for Disease Control and Prevention, 
European Centre for Disease Prevention and Control, China CDC, and selected highly cited 
experts on this topic from academic institutions. Representatives from the key agencies listed 
above were nominated by the agencies themselves, at the request of the WHO Chief Scientist. 
The criteria for selecting experts who were highly cited was based on the most cited authors in 
a scoping literature review of the existing definitions of airborne transmission of pathogens in 
2021 (see Introduction), but also with consideration for geographical and gender balance within 
the WG. This core group was considered a starting point for identifying other relevant global 
experts who were currently active in this area due to the COVID-19 pandemic. 

The WHO Secretariat proposed a WG Chair (Gagandeep Kang) and Co-Chair (Yuguo Li) 
who were selected from the WG members, with confirmation of election by the WG. The remit 
of the WG was to drive the consultation process, ensure the required diversity of viewpoints 
were included (e.g. by suggesting names for the full global TCG), and to assist the Convening 
Lead in reaching consensus to produce the final document. The list of members, their affiliations 
and areas of expertise, who were involved in each part of the consultation process are included 
in Annex 4.
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Annexes

Annex 3.  Two processes undertaken for the consultation 
process

Stage 1: Based on the results of the scoping literature review of the existing definitions of air-
borne transmission (see Introduction section), and an initial internal consultation, the WHO 
Secretariat developed a Concept Note and a discussion document with a matrix of the:

• list of key questions (or domains) that needed consensus (i.e., where major disagree-
ment existed);

• major differing viewpoints within each of those questions; and
• list of the potential (different) actionable ways to resolve those questions.

The WG members were selected by the WHO Secretariat (using the criteria outlined in the 
Governance section in Annex 1) and were sent the Concept Note with an email inviting par-
ticipation. Two WG meetings were held virtually on 12 May 2022 and 10 June 2022 to collect 
considered inputs into the first discussion document and suggested members for the wider, full 
TCG (see Stage 2 below). In attendance at these meetings were ten members of the WG, the 
WHO Chief Scientist, and the WHO Secretariat (see Annex 4).
 Stage 2: The WHO Secretariat convened the full TCG, as follows: 

• The full TCG consisted of the WG Chair, Co-Chair, the WG members plus additional
key, selected stakeholders/agencies, with wide multidisciplinary representation (see
Annex 4);

• Input was sought from this group via informal, but structured, targeted ways e.g., by
inviting detailed written comments on the discussion documents, and at three vir-
tual meetings to verbally exchange views and debate unresolved issues;

• TCG members were encouraged to share and discuss draft documents with their
relevant constituencies and collect, collate and provide written feedback to the WHO
Secretariat.

• The first virtual meeting of the full TCG took place on 17 June 2022 and was followed
by an opportunity to provide written feedback on a first draft document;

• This, and all subsequent, drafts were prepared by the WHO Secretariat and approved
by the TCG Chair and Co-Chair prior to distribution for feedback;

• A total of 41 technical experts were consulted (see Annex 4). Thirty-one experts pro-
vided written feedback and a further eight individuals provided verbal-only input via
their contributions at the virtual meetings. Four experts were invited to contribute
and accepted but did not provide either verbal or written input;

• Following these consultations, the WHO Secretariat, with assistance from the WG
Chair and Co-Chair, revised the draft document and circulated it to the full TCG
on 23 October 2022, with a deadline for feedback of 7 November 2022. The feedback
provided by the TCG to that point in time was shared with members of the group on
27 October 2022;

• A second virtual meeting of the TCG was held on 11 November 2022 at which
remaining unresolved issues were discussed and dissenting views were noted;

• A revised version of the document was circulated to the TCG on 19 December 2022.
TCG members were asked to seek and return further consolidated feedback from
their respective constituencies by 31 January 2023;

• In response to this version of the document, 523 individual comments were received
by the WHO Secretariat. This large amount of detailed input was collated and sum-

\l
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marized during February-March 2023. A revised version was drafted and made ready 
for circulation in mid-April 2023; 

• At the request of the WHO Director-General, a hybrid third TCG meeting (in
Geneva and online) was held over two days on 27-28 April 2023. All TCG members
and the relevant WHO technical leads were invited to attend, along with several
additional commentators who had previously expressed views on the topic. 34 TCG
members, 31 WHO staff and 23 additional commentators were able to attend at least
some parts of this hybrid meeting;

• A revised version was drafted in response to these inputs and was sent to the TCG
members for inputs on 16 June 2023, with a request for inputs by 7 July 2023;

• A final, virtual, fourth meeting of the TCG was convened on 4th August 2023 where
any remaining input was received and discussed;

• The revised version was shared on 8th September and the final version on 16th Novem-
ber 2023;

• Discussions with the relevant agencies regarding endorsement and publication was
then undertaken and the final document was published in April 2024.

As with the development of many other WHO normative products, the decision-making pro-
cess used for this consultation was to aim for consensus among the contributing experts. As 
per the WHO Quality Assurance Handbook for normative product development (In publica-
tion), the process of reaching consensus in group decision-making always involves discussion 
and compromise to arrive at a decision that is acceptable to all parties and is a process whereby 
the consent of all group members is pursued. When consensus is said to have been reached, it 
generally means that every group member finds the proposed resolution acceptable – or at least 
lends it support, even if less than wholeheartedly.

Global technical consultation report on proposed terminology for pathogens that transmit through the air
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Annex 5.  Summary of discussions

Areas of overall general agreement

The discussions of the global TCG, and engagement with others in the group’s jurisdictions 
during the consultation, have resulted in alignment on the following issues: 

• IRPs exist on a continuum spectrum of sizes, and no definitive cut off points should
be applied to distinguish smaller from larger particles. Recognition of the continuum
spectrum of sizes allows to move away from the dichotomy of previous and com-
monly known terms, such as ‘aerosols’ (generally smaller particles) and ‘droplets’
(generally larger particles);

• There was a consensus about how IRPs are expelled within a turbulent puff cloud
that moves through the air following emission from the human respiratory tract of
an infected person. The trajectory of IRPs is influenced by many factors including
the force and volume of exhalation as well as including several environmental condi-
tions, such as ambient air temperature, humidity, airflow magnitude and velocity and
distribution within a space. These factors coupled with the pathogen’s viability and
infectivity in the IRPs contribute to the transmission probability;

• There was agreement on the importance of adequate ventilation and airflow patterns
within indoor spaces to help mitigate the risk of transmission of IRPs;

• It was agreed that different pathogens can have different predominant, or mixes of,
modes of transmission. In addition, pathogens vary in their frequency, virulence,
treatability, and potential impact on hosts and society. This means that transmis-
sion prevention and mitigation measures need to be tailored differently for different
pathogens and settings. Hence, pathogen- and setting-specific guidance regarding
mitigation measures, including IPC guidance, is needed. There was recognition that
lumping mitigation measures for all transmission modes, for all pathogens, into
one basket, and trying to apply a “one size fits all” approach would be incorrect or
impractical;

• Despite a need to tailor mitigation measures to account for different transmission
scenarios as described above, most, but not all, agreed that using the more general
and broader term of ‘transmission through the air’ to refer to the overall concept of
pathogens being transmitted through the air, and to cover the airborne transmis-
sion/inhalation and direct deposition modes of transmission of IRPs outlined in this
document, was a useful descriptor, particularly when trying to explain these complex
concepts to the general public.

Areas of non-consensus and concern regarding consequences

It is recognized that several revisions of existing terminology that have been put forth as a result 
of this global technical consultation (and summarized above) could have major ramifications 
for the use of those terms in other disciplines. 

If, as is recognized herewith, smaller IRPs are capable of being transmitted at both short- 
and long-range, then to effectively counteract this risk, full (what is now known as) ‘airborne 
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precautions’, which involves substantive IPC measures, such as use of respirators, with or with-
out specialized hospital rooms etc., may need to be applied to all those at risk of the disease, 
if a precautionary principle is to be applied or applied selectively depending on the frequency, 
morbidity, and treatment options for different pathogens (which may vary widely between and 
within countries). This would have legal, logistic, operational and financial consequences that 
have global implications with regards to equity and access.
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World Health Organization
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1211 Geneva 27
Switzerland
Email:  ttatconsult@who.int
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