WHO-Plague Vaccines in Preclinical Development and Clinical Trials

Ashok K. Chopra, Ph.D., C.Sc.

Professor and John S. Dunn Distinguished Chair in Global Health
Department of Microbiology & Immunology, UTMB, Galveston, TX
Assistant Director, Microbiology & Immunology Graduate Program
Director, T32 Biodefense Training Program

Senior Scientist, Centers for Biodefense & Emerging Infectious and Tropical Diseases, Sealy Institute for Vaccine Sciences
Institute for Human Infections & Immunity
Institute for Translational Sciences

Scientific Staff, Shriners Burns Hospitals for Children
Early Plague Vaccines

Early Generation plague vaccines

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Type</th>
<th>Doses</th>
<th>Route</th>
<th>Species Tested</th>
<th>Protection</th>
<th>Type of Immune Response</th>
<th>Shortcomings</th>
<th>Years Studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haffkine Vaccine</td>
<td>Heat-killed</td>
<td>1</td>
<td>S.C.</td>
<td>rabbits</td>
<td>Bubonic only</td>
<td>Likely humoral only</td>
<td>Severely Reactogenic</td>
<td>1897-1935</td>
</tr>
<tr>
<td>Plague Vaccine (USP)</td>
<td>Formalin inactivated</td>
<td>3+</td>
<td>I.M.</td>
<td>mice</td>
<td>Bubonic only</td>
<td>humoral</td>
<td>Frequent boosters, reactogenic</td>
<td>1939-1999</td>
</tr>
<tr>
<td>Live Plague Vaccine (EV76, EV NIIG)</td>
<td>Live-attenuated</td>
<td>1+</td>
<td>various§</td>
<td>Mice, rats, guinea pigs, NHPs*</td>
<td>both</td>
<td>Humoral and cell-mediated</td>
<td>Frequent boosters, reactogenic, virulent during iron overload</td>
<td>1936-Present</td>
</tr>
</tbody>
</table>

§Skin Scarification, IntraDermal, S.C., Per Os, InHalation

*can cause disease in AGMs

In humans, EV76 is recommended once a year; used in Former States of Soviet Union and regions where plague is endemic, not approved in USA/Europe. Abs to F1, LcrV, and YscF. Commonwealth Serum Laboratories in Australia produce HKV; 3 doses in humans.
New Generation Live-Attenuated Plague Vaccines

<table>
<thead>
<tr>
<th>Vaccine</th>
<th># of Doses</th>
<th>Mutation</th>
<th>Route</th>
<th>Species Tested</th>
<th>Safety shown in immuno-compromised models</th>
<th>Protection</th>
<th>Type of Immune Response</th>
<th>Years Studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y. pestis CO92 ΔLMA*</td>
<td>1-2</td>
<td>lpp, msbB, ail</td>
<td>I.N. or I.M.</td>
<td>Mice, Rats</td>
<td>Rag1 KO/ Iron overload‡</td>
<td>Pneumonic</td>
<td>Both</td>
<td>2015</td>
</tr>
<tr>
<td>Y. pestis CO92 ΔLMP</td>
<td>1-2</td>
<td>lpp, msbB, pla</td>
<td>I.M.</td>
<td>Mice, Rats</td>
<td>Safe</td>
<td>Pneumonic</td>
<td>Both</td>
<td>2016</td>
</tr>
<tr>
<td>Y. pestis EV76-B-SHUΔpla</td>
<td>3</td>
<td>pgm, pla</td>
<td>I.T. or S.C.</td>
<td>Mice</td>
<td>NT</td>
<td>Pneumonic</td>
<td>Both</td>
<td>2020</td>
</tr>
<tr>
<td>Y. pestis CO92 ΔpgmΔpPst</td>
<td>2</td>
<td>pgm, pPst(pla)</td>
<td>S.C.</td>
<td>Mice</td>
<td>NT</td>
<td>Pneumonic</td>
<td>Both</td>
<td>2021</td>
</tr>
</tbody>
</table>

*no clinical symptoms observed in Cynomologous macaques or African green monkeys; ‡ Increased virulence of *Y. pestis* KIM/D27 (pgm-minus) seen during iron overload conditions*
New Subunit Plague Vaccines and Adjuvants

<table>
<thead>
<tr>
<th>Vaccine</th>
<th># of Doses</th>
<th>Adjuvant</th>
<th>Route</th>
<th>Species Tested</th>
<th>Protection*</th>
<th>Type of Immune Response</th>
<th>Years Studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>rF1-V</td>
<td>2</td>
<td>Alum</td>
<td>S.C.</td>
<td>Mice, NHP</td>
<td>Pneumonic</td>
<td>Humoral</td>
<td>1998-present</td>
</tr>
<tr>
<td>rF1+rV</td>
<td>2</td>
<td>Alum</td>
<td>I.M.</td>
<td>Mice, GP, NHP</td>
<td>Pneumonic</td>
<td>Humoral</td>
<td>1997-2011</td>
</tr>
<tr>
<td>Calcium Phosphate based Protein-coated Microcrystals F1V</td>
<td>2</td>
<td>Alum</td>
<td>S.C</td>
<td>Mice</td>
<td>Pneumonic</td>
<td>Humoral</td>
<td>2018-2022</td>
</tr>
<tr>
<td>Flagellin-F1-V</td>
<td>2</td>
<td>Flagellin</td>
<td>I.M.</td>
<td>Mice/NHP†</td>
<td>Pneumonic</td>
<td>Humoral</td>
<td>2006-2020</td>
</tr>
<tr>
<td>Protollin F1-V**</td>
<td>2</td>
<td>Protollin</td>
<td>I.N.</td>
<td>Mice</td>
<td>Pneumonic</td>
<td>Humoral</td>
<td>2006</td>
</tr>
<tr>
<td>Single dose F1-V polyanhydride nanoparticle coupled with cyclic dinucleotides</td>
<td>1</td>
<td>STING agonist; Stimulator of Interferon Genes</td>
<td>I.N.</td>
<td>Mice</td>
<td>Pneumonic</td>
<td>Both</td>
<td>2019</td>
</tr>
<tr>
<td>rV10</td>
<td>2</td>
<td>Alum</td>
<td>I.M.</td>
<td>Mice, GP, NHP</td>
<td>Pneumonic</td>
<td>Humoral</td>
<td>2005-2011</td>
</tr>
<tr>
<td>Peptidoglycan-Free OMV (Bacterial Ghosts)-phage lytic system</td>
<td>2</td>
<td>self</td>
<td>S.C.</td>
<td>Mice/GP</td>
<td>Bubonic</td>
<td>Both</td>
<td>2021</td>
</tr>
<tr>
<td>Manganese silicate nanoparticle rF1-V10</td>
<td>2</td>
<td>self</td>
<td>S.C.</td>
<td>Mice</td>
<td>Pneumonic</td>
<td>Both</td>
<td>2023</td>
</tr>
<tr>
<td>polymeric F1 + LcrV (ILB1)-R</td>
<td>1</td>
<td>Alum</td>
<td>S.C.</td>
<td>Mice</td>
<td>Pneumonic</td>
<td>Humoral</td>
<td>2023</td>
</tr>
<tr>
<td>Y. Pseudotuberculosis-based LcrV MPLA OMV</td>
<td>2</td>
<td>MPLA</td>
<td>I.M.</td>
<td>Mice</td>
<td>Pneumonic</td>
<td>Both</td>
<td>2020-2023</td>
</tr>
<tr>
<td>Plague molecular microencapsulated vaccine</td>
<td>2</td>
<td>Alum + self</td>
<td>S.C.</td>
<td>Mice, GP, NHP, Humans</td>
<td>Bubonic</td>
<td>Both</td>
<td>1983-2018</td>
</tr>
</tbody>
</table>

*Pneumonic can be via either aerosol or intranasal infection

**Proteosomes non-covalently complexed to LPS

†no challenge data shown

Licensed in Russia
Addition of YscF boosts antibody responses to LcrV of the plague vaccine and provides added protection against rechallenge

Fig. (A) Balb/c mice were vaccinated with various purified plague antigens adjuvanted with alhydrogel. **(B)** Immunization scheme. **(C)** Antigen-specific antibody (IgG) titers. **(D)** Survival of immunized mice against IN challenge with 90 LD$_{50}$ of Y. pestis CO92. The surviving mice were rechallenged with 9,800 LD$_{50}$ at day 48 post-first challenge. The animal mortality data was analyzed by Kaplan Meier's survival estimates.

Addition of YscF to F1-V boosts protective effect of Ad5-based plague vaccine

Mice were immunized (i.n.) twice 21 days apart with either 1.2x10^{10} v.p. (virus particles) of rAd5-YFV or rAd5-LcrV vaccines, with mice receiving PBS/Ad5 served as controls. After 24 days post second immunization, animals were challenged with 100 LD_{50} of *Y. pestis* CO92-*lux* (A&B) by i.n. route or by *Y. pestis* CO92 F1-negative strain via the i.n. route (C). The percent of animal survival was calculated using Kaplan-Meier analysis with log-rank (Mantel-Cox) test.

Fig. Protection of mice conferred by immunization with rAd5-YFV or rAd5-LcrV vaccines. Mice were immunized (i.n.) twice 21 days apart with either 1.2x10^{10} v.p. (virus particles) of rAd5-YFV or rAd5-LcrV vaccines, with mice receiving PBS/Ad5 served as controls. After 24 days post second immunization, animals were challenged with 100 LD_{50} of *Y. pestis* CO92-*lux* (A&B) by i.n. route or by *Y. pestis* CO92 F1-negative strain via the i.n. route (C). The percent of animal survival was calculated using Kaplan-Meier analysis with log-rank (Mantel-Cox) test.
Bacterial/viral-based and mRNA-based plague vaccines

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Type</th>
<th>Doses</th>
<th>Route</th>
<th>Species Tested</th>
<th>Protection</th>
<th>Type of Immune Response</th>
<th>Years Studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA F1-V vaccines</td>
<td>DNA vaccine</td>
<td>Up to 6</td>
<td>I.M.</td>
<td>Mice</td>
<td>Pneumonic</td>
<td>Both</td>
<td>1999-2012</td>
</tr>
<tr>
<td>Ad5-F1+ Ad5-LcrV</td>
<td>Adenoviral vector</td>
<td>2</td>
<td>I.M.</td>
<td>Mice</td>
<td>Pneumonic</td>
<td>Both</td>
<td>2006-2010</td>
</tr>
<tr>
<td>Ad5-YFV</td>
<td>Adenoviral vector</td>
<td>2</td>
<td>I.N.</td>
<td>Mice/NHP</td>
<td>Pneumonic</td>
<td>Both</td>
<td>2016-2023</td>
</tr>
<tr>
<td>T4-Phage</td>
<td>Prokaryotic viral-vector</td>
<td>2</td>
<td>I.M.</td>
<td>Mice/rats</td>
<td>Pneumonic</td>
<td>Both</td>
<td>2013-2023</td>
</tr>
<tr>
<td>S. Typhimurium expressing plague antigens</td>
<td>Bacterial Vector</td>
<td>1-2</td>
<td>Mostly Oral</td>
<td>Mice</td>
<td>Pneumonic</td>
<td>Both</td>
<td>1995-2016</td>
</tr>
<tr>
<td>S. Typhi expressing plague antigens</td>
<td>Bacterial Vector</td>
<td>1-3</td>
<td>I.N.</td>
<td>Mice</td>
<td>Bubonic/Septicemic</td>
<td>Both</td>
<td>2004-2009</td>
</tr>
<tr>
<td>Lactiplantibacillus plantarum expressing LcrV</td>
<td>Bacterial Vector</td>
<td>3*</td>
<td>Oral</td>
<td>Mice</td>
<td>Not tested</td>
<td>Both</td>
<td>2011</td>
</tr>
<tr>
<td>F1 mRNA-LNP</td>
<td>mRNA-LNP</td>
<td>1</td>
<td>I.M.</td>
<td>Mice</td>
<td>Bubonic</td>
<td>Both</td>
<td>2023</td>
</tr>
<tr>
<td>Y. pseudotuberculosis producing F1</td>
<td>Bacterial Vector</td>
<td>1+</td>
<td>S.C. or Oral</td>
<td>Mice</td>
<td>Bubonic/Pneumonic</td>
<td>Both</td>
<td>2008-2020</td>
</tr>
<tr>
<td>Self-amplifying RNA (F1+LcrV)</td>
<td>RNA-based</td>
<td>2</td>
<td>I.M.</td>
<td>Mice</td>
<td>Bubonic</td>
<td>Both</td>
<td>2023</td>
</tr>
<tr>
<td>F. tularensis ΔcapB + F1-LcrV/PA</td>
<td>Bacterial Vector</td>
<td>2</td>
<td>I.M./I.N.</td>
<td>Mice</td>
<td>Respiratory infection</td>
<td>Both</td>
<td>2018</td>
</tr>
</tbody>
</table>

*Each dose consisted of 2x daily administrations for 3-4 days.

Note: The table lists various plague vaccine candidates and their characteristics, including the type of vaccine (e.g., DNA vaccine, adenoviral vector), the number of doses, routes of administration (I.M. = intramuscular, I.N. = intranasal), species tested, protection type, immune response type, and the time period during which the studies were conducted.
Bacteriophage T4 as a novel vector and adjuvant for vaccines

Fig. (A) Vaccine formulations used in various groups. The soluble antigens (groups 2-4) were adjuvanted with alhydrogel. The T4 displayed groups contained no adjuvant. (B) Survival of vaccinated rats against intranasal challenge with 5,000 LD_{50} of *Y. pestis* CO92. The animal mortality data was analyzed by Kaplan Meier’s survival estimates.

Fig. Structural model of bacteriophage T4. The enlarged capsomer shows the major capsid protein gp23* (cyan; ‘*’ represents the cleaved form) (930 copies), Soc (blue, 870 copies), and Hoc (yellow; 155 copies). Yellow subunits at the five-fold vertices correspond to gp24*.

Fig. Immunization of rats by the IN route provided complete protection to animals against anthrax and plague. Brown Norway rats were immunized and bled as shown in a, and immunogen-specific IgG levels were determined by ELISA (b&c), PA-specific neutralization titers (d), IgG1 and IgG2a levels against F1V (e&f) and PA (g&h). The animal survival was monitored for 30 days (i).
Plague vaccines tested in non-human primate models

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Type</th>
<th>Adjuvant</th>
<th>Doses</th>
<th>Route</th>
<th>Cyno Protection</th>
<th>AGM Protection</th>
<th>Type of Immune Response</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>rF1-V</td>
<td>Subunit</td>
<td>Alum</td>
<td>3</td>
<td>S.C.</td>
<td>80%</td>
<td>20%</td>
<td>Humoral</td>
<td>2007</td>
</tr>
<tr>
<td>LicKM-LcrV-F1</td>
<td>Subunit</td>
<td>LicKM+Alum</td>
<td>3</td>
<td>S.C.</td>
<td>100%</td>
<td>NT</td>
<td>Humoral</td>
<td>2007-2009</td>
</tr>
<tr>
<td>rF1+ rV</td>
<td>Subunit</td>
<td>Alum</td>
<td>2</td>
<td>I.M.</td>
<td>100%</td>
<td>NT</td>
<td>Humoral</td>
<td>2011</td>
</tr>
<tr>
<td>rV10</td>
<td>Subunit</td>
<td>Alum</td>
<td>3</td>
<td>I.M.</td>
<td>100%*</td>
<td>33%</td>
<td>Humoral</td>
<td>2011</td>
</tr>
<tr>
<td>rAd5-YFV+ rYFV†</td>
<td>Viral-vector with protein boost</td>
<td>Self</td>
<td>1 each</td>
<td>I.N.-I.M.</td>
<td>100%</td>
<td>NT</td>
<td>Both</td>
<td>2016</td>
</tr>
<tr>
<td>Microvesicle (Bacteroides spp.) F1-V</td>
<td>OMV</td>
<td>Self</td>
<td>2 doses</td>
<td>Oral/I.N.</td>
<td>NT</td>
<td>NT</td>
<td>Robust IgA and IgG in blood and airways</td>
<td>2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Type</th>
<th>Adjuvant</th>
<th>Doses</th>
<th>Route</th>
<th>Protection in Mice</th>
<th>Type of Immune Response</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad5-YFV/LMA‡</td>
<td>Heterologous</td>
<td>Self</td>
<td>1 each</td>
<td>Both I.N.</td>
<td>Pneumonic & Bubonic</td>
<td>Both</td>
<td>2021-2023</td>
</tr>
</tbody>
</table>

* Only 50% of controls died; † Ad5 pre-existing immunity induced prior to immunization; ‡ no clinical symptoms observed in Cynos or AGMs
Ad5-YFV vaccine effective in cynomolgus macaques

Fig. 1. CT scans. CereTom NL 3000 (Neurologica) was used. Settings: tube voltage, 100 kV; tube current, 5 mA; axial mode with slice thickness of 1.25 mm. Image resolution, 512x512 pixels. Left: naïve infected animal (consolidation in the lungs is apparent, arrows). Right: Immunized NHP before and after challenge (note no significant differences).

Fig. 2. Histopathological analysis of tissues collected from NHPs after Y. pestis CO92 aerosol challenge. Various tissues were collected from the control (3- or 4- day post CO92 challenge) and immunized NHPs (28 days post CO92 challenge) after euthanization, and processed for histopathological analysis.

Fig. The rAd5-YFV vaccine in combination with rYFV (Combo YFV) provides protection to NHPs with pre-existing adenovirus immunity against lethal aerosol challenge of CO92. To induce pre-existing adenovirus immunity, NHPs were injected in the quadriceps muscle with 5×10^{10} virus particles (v.p.) of Ad5-Empty (day 0). On day 30, these NHPs were immunized with 1×10^{11} v.p. of rAd5-YFV (as aerosol mist), followed by 50 µg of rYFV boost (emulsified 1:1 in Alum adjuvant) via the IM route on day 42. Animals received saline only served as controls. On day 85, the NHPs were challenged with CO92 by the aerosol route with a Dp (presented dose) ranging from 1.32 to 8.08 x 10^7 CFU, and percentage of survival was plotted.

Sha et al., CVI 23, 586-600 (2016).
2006
Dynport:
\textit{rF1V}
Phase 1
Serum Antibodies?

2007
PharmAthene UK Limited:
\textit{rF1 + rV + Alhydrogel}
Phase 1b
Serum Antibodies
Cell-mediated responses!

2008
Dynport:
\textit{rF1V}
Phase 2a
Serum Antibodies?

2012
Dynport:
\textit{rF1V ± adjuvant*}
Phase 2a
Serum Antibodies?

2014
NIAD:
\textit{Flagellin/F1/V}
Phase 1
Serum Antibodies
Cell-mediated responses!

2015
Jiangsu CDC:
\textit{F1 + rV}
Phase 2a
Serum Antibodies

2015
NIEGE:
\textit{Live Vaccine EV 76}
Phase 4 (Immunology Outcome)
Serum Antibodies

2018
WHO Plague Vaccines Workshop
Both humoral and cell-mediated immune responses in NHPs (2023)

2021
Dynport:
\textit{rF1V + CpG 1018®}
Phase 2
Serum Antibodies

2022
Jiangsu CDC:
\textit{F1 + rV}
Phase 2b
Serum Antibodies

2022
Oxford Vaccine Group:
\textit{ChAdOx1-PLAVAC}
Phase 1
Serum Antibodies?

2023
Dynavax:
\textit{rF1V + Cpg 1018®}
Phase 2
Serum Antibodies

** Status of plague vaccine-clinical trials

\textbf{New Drug Clinical Trials}

\textit{Downward Trend: Only 16 out of every 100 drugs that enter Phase 1 will make it to FDA approval.}

- **NIAD:** Flagellin/F1/V
- **Dynport:** rF1V ± adjuvant*
- **Jiangsu CDC:** F1 + rV
- **NIIEG:** Live Vaccine EV 76
- **WHO Plague Vaccines Workshop:** ChAdOx1-PLAVAC
- **Oxford Vaccine Group:** ChAdOx1-PLAVAC
- **Dynavax:** rF1V + Cpg 1018®

*Adjuvant not specified
Ages of study participants range from 18-55 years
All vaccines** are given in 2-3 doses intramuscularly over a range of 6 months
**The NIIEG EV 76 vaccine was given 1-4 times at intervals of 1-3 months
Signature Tagged Mutagenesis (STM) of *Yersinia pestis* CO92 to identify novel virulence factors/immunogens

Step 1 (Library Generation)

Step 2 (Pooling)

Step 3 (Fitness Challenge in Pneumonic Plague Model)

Step 4 (Abundance Differential)

Total = 53 tags
5088 mutants