#### Selection Bias in COVID-19 Test Negative Design Studies

Eric J Tchetgen Tchetgen

University of Pennsylvania

with

Xu Shi, University of Michigan

and Kendrick Li, St. Jude Children's Research Hospital

### TND Study of vaccine effectiveness (Jackson and Nelson, Vaccine 2013)

- Ideal TND Study Sample: Patients who
  - Have Covid-like symptoms and as a result present at a healthcare facility to get tested.
  - Cases = test-positive, controls = test-negative
  - VE = 1 risk ratio (risk in vaccinated / risk in unvaccinated) obtained via logistic regression



## When does TND work (Jackson and Nelson, Vaccine 2013 Shi et al, AJE, 2023)

• The Directed Acyclic Graph (DAG) below illustrates the rationale justifying TND and encodes relationships between Vaccination (V), True infection Status (I), Observed infection status (I\*), Symptoms (S),

Testing (T), and Healthcare-Seeking behavior (H),

 Implicitly conditions on measured confounders: Age, Gender, Socioeconomic status.

• TND works to the extent that it reduces confounding by H by enrolling only individuals who test

#### When does TND work? (Jackson and Nelson, Vaccine 2013; Shi et al., AJE, 2023)

- More formally, TND makes three key assumptions:
  - Tested patients have the same healthcare-seeking behavior (H=1 if T=1);
  - V does not have a direct effect on testing (no V->T);
  - V does not have a direct effect on symptoms in test-positive sample (no V->S);



 Under these assumptions, vaccinated vs unvaccinated are comparable wrt H by design, yielding an unbiased VE estimate via logistic regression.

# Challenges in TND studies (Shi et al., AJE, 2023; Sullivan et al., AJE, 2016)

- TND is susceptible to several potential sources of bias:
  - Confounding bias: there may be unmeasured common causes U of vaccination, COVID infection and testing, e.g. occupation as healthcare worker, educator, resident of care facility, previous infection, etc.
  - Assumption that tested patients have the same healthcare-seeking behavior is seldom realistic. HSB is likely on a spectrum and cannot be accounted for fully by conditioning on testing -> residual confounding by HSB



#### Challenges in TND studies (Shi et al, AJE, 2023; Sullivan et al, AJE, 2016)

- TND sources of bias continued:
  - More importantly, conditioning on testing may induce a particularly insidious form of selection bias known as collider stratification bias along the pathway V->T<-S->I. Collider bias can be made worse if as likely the case, vaccination has direct effect not only on testing but also on symptoms.
  - Collider bias can render two factors that are independent in the population dependent in the TND sample.



### Challenges in TND studies (Sullivan et al, AJE, 2016; Shi et al, AJE, 2023)

- TND sources of bias continued:
  - In fact, HSB are independent on S in the population, however both are positively associated with testing, then in TND sample HSB and S will be negatively correlated, that is, a person in the TND sample with low HSB is likely in the sample because they experience severe S. This, in turn, creates spurious association between V and I!
  - Furthermore, recent challenges that TND must face include widespread home testing and repeat testing which likely distort selection into TND studies.



# Negative Controls for detecting and accounting for hidden selection Bias in TND

COVID-19 VE using data from UMich Health System

|                                   | Unvaccinated  | Vaccinated     |
|-----------------------------------|---------------|----------------|
|                                   | (N=12,672)    | (N=39,591)     |
| Vaccine types                     |               |                |
| Pfizer-BioNTech                   | /             | 20,312 (51.3%) |
| Moderna                           | /             | 10,831 (27.4%) |
| J & J                             | /             | 1,409 (3.6%)   |
| Other                             | /             | 7,039 (17.8%)  |
| COVID-19 Infection                | 3,074 (24.2%) | 2,774 (7.0%)   |
| NCE: Immunization before Dec 2020 | 3,854 (30.4%) | 18,167 (45.9%) |
| NCO conditions                    |               |                |
| Arm/leg cellulitis                | 39 (0.3%)     | 161 (0.4%)     |
| Eye/ear disorder                  | 83 (0.6%)     | 518 (1.3%)     |
| Acid reflux (GERD)                | 619 (4.9%)    | 3,188 (8.0%)   |
| Atopic dermatitis                 | 13 (0.1%)     | 41 (0.1%)      |
| Injuries                          | 1,033 (8.2%)  | 3,690 (9.3%)   |
| General adult examination         | 752 (5.9%)    | 4,687 (11.8%)  |
| No. of NCO conditions $\geq 1$    | 2,258 (17.8%) | 10,355 (26.2%) |

Li, K.Q., Shi, X., Miao, W. and Tchetgen Tchetgen, E., 2023. Double negative control inference in test-negative design studies of vaccine effectiveness. Journal of the American Statistical Association. pp.1-12.



|                 | Negative control     | Logistic regression  |  |
|-----------------|----------------------|----------------------|--|
|                 | regative control     | $(OR \approx RR)$    |  |
| Pfizer-BioNTech | 80.2% (78.3%, 81.9%) | 74.1% (72.3%, 75.8%) |  |
| Moderna         | 89.7% (88.1%, 91.1%) | 78.8% (76.8%, 80.7%) |  |
| Janssen (J & J) | 65.8% (54.6%, 74.1%) | 56.3% (48.4%, 62.9%) |  |

#### References

- Jackson, M.L. and Nelson, J.C., 2013. The test-negative design for estimating influenza vaccine effectiveness. *Vaccine*, 31(17), pp.2165-2168.
- Li, K.Q., Shi, X., Miao, W. and Tchetgen Tchetgen, E., 2023. Double negative control inference in test-negative design studies of vaccine effectiveness. *Journal of the American Statistical Association*, pp.1-12.
- Shi, X., Li, K.Q. and Mukherjee, B., 2023. Current challenges with the use of test-negative designs for modeling COVID-19 vaccination and outcomes. *American Journal of Epidemiology*, 192(3), pp.328-333.
- Sullivan, S.G., Tchetgen Tchetgen, E.J. and Cowling, B.J., 2016. Theoretical basis of the test-negative study design for assessment of influenza vaccine effectiveness. *American Journal of Epidemiology*, 184(5), pp.345-353.