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CHAPTER 1. Executive Summary 

Nuclear power has been a major source of energy supply in many countries. 

Although nuclear power plants must comply with high safety standards, history 

shows that severe nuclear accidents can occur under unexpected circumstances. 

Nuclear accidents may result in a release of various radionuclides into the 

environment and the contamination of surrounding areas, which can lead to public 

health problems. An increase in the incidence of thyroid cancer after exposure during 

childhood and adolescence is a well-documented health consequence of exposure 

to radioiodine as a result of the Chernobyl nuclear power plant accident. 

After the Fukushima Daiichi accident, public health fears and concerns, 

particularly about thyroid cancer risk, were heightened. In response to those 

concerns, thyroid examinations of children and adolescents were implemented as 

part of the Fukushima Health Management Survey. The increasing public awareness 

about the risk of thyroid cancer as a consequence of radiation exposure, and public 

fears about thyroid cancer and interest in undergoing a thyroid examination, raise 

questions about whether and how to conduct thyroid health monitoring after future 

nuclear accidents. This underscores the need for the development of guidelines on 

thyroid health monitoring in case of a nuclear accident. 

Within this context, one needs to be aware of the apparent rise in thyroid cancer 

incidence observed in several countries where the practice of conducting thyroid 

ultrasonography screening of adults has increased. This phenomenon has led to 

ongoing discussion over the potential issue of overdiagnosis as a result of thyroid 

screening (i.e. detection of thyroid cancer that would not have been detected without 

the screening or would not have caused symptoms or death during a person’s 

lifespan), as well as questions about the benefits of early diagnosis of thyroid cancer, 

which is known to have a very favourable prognosis for the majority of patients 

irrespective of screening. This needs to be carefully considered when planning for 

thyroid health monitoring after a nuclear accident. 

With this in mind, the International Agency for Research on Cancer (IARC) 

convened a multidisciplinary, international Expert Group to develop 

recommendations on long-term strategies for thyroid health monitoring after a 

nuclear accident based on the current scientific evidence and previous experiences. 

The recommendations developed by the Expert Group refer to possible future 

nuclear accidents with exposure of large populations to volatile radioiodine, and to a 
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great extent are informed by the lessons learned from previous nuclear accidents. 

Although the report draws on information from past nuclear accidents, the objective 

of the report is not to evaluate actions taken during past nuclear accidents, or to 

provide guidance on the continuation of actions and programmes that are in 

progress. The available evidence was reviewed by subject-specific experts and is 

presented as a series of chapters as a basis for recommendations by the authors of 

this Technical Publication. 

 

After reviewing the scientific evidence, the Expert Group made the 
following two recommendations: 

Recommendation 1: The Expert Group recommends against population thyroid 

screening after a nuclear accident. 

The Expert Group defines “population thyroid screening” as actively recruiting all 

residents of a defined area, irrespective of any individual thyroid dose assessment, 

to participate in thyroid examinations followed by clinical management according to 

an established protocol. The Expert Group recommends against population thyroid 

screening, because the harms outweigh the benefits at the population level. 

Recommendation 2: The Expert Group recommends that consideration be given to 

offering a long term thyroid monitoring programme for higher risk individuals after a 

nuclear accident. 

The Expert Group defines a “thyroid monitoring programme” as including 

education to improve health literacy, registration of participants, centralized data 

collection from thyroid examinations, and clinical management. A thyroid monitoring 

programme is an elective activity offered to higher-risk individuals, defined herein as 

those exposed in utero or during childhood or adolescence with a thyroid dose of 

100–500 mGy or more, who may choose how and whether to undergo thyroid 

examinations and follow-ups in an effort to benefit from early detection and treatment 

of less advanced disease. A “thyroid monitoring programme” is distinct from 

population screening, with the starting point being the individual instead of the 

population. Within the thyroid monitoring programme, there should be a shared 

decision-making process between individuals, families, and clinicians about whether 

and how to engage in thyroid examinations and follow-ups. Under the principle of 

“people-centred health services”, the potential benefits and harms of examining the 

thyroid by either palpation or ultrasonography in asymptomatic individuals should be 
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discussed with the support of well-designed educational materials to optimize 

informed decision-making consistent with the person’s values, preferences, and 

context. 

 

 

These recommendations were developed in the context of considerations 

relevant to exposure to any toxic (including radioactive) substances, and 

preparedness and response to nuclear accidents, given their implications for decision-

making about thyroid health monitoring. They include having in place a health 

monitoring programme, including cancer registration, as well as a dynamic risk 

communication programme before a nuclear accident. Also considered was having 

an active and timely dosimetry monitoring programme and protective actions to 

minimize radiation exposure, such as an iodine thyroid blocking programme after a 

nuclear accident. 

The Expert Group acknowledges that there may be important considerations in 

addition to the scientific evidence during such decision-making processes, including 

socioeconomic implications, health-care resources, and social values, and that the 

final decisions are made by the government, the relevant authorities, and the society 

affected by the nuclear accident. These recommendations are intended to serve as a 

reference primarily for government officials, policy-makers, and health professionals 

who would be involved in the decision-making, planning, and implementation of 

thyroid monitoring in case of a nuclear accident.  
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CHAPTER 2. Introduction 

2.1 Rationale 

Nuclear power has been a major source of energy supply in many countries. 

Worldwide, there are more than 400 nuclear power plants in operation. Although 

nuclear power plants must comply with high safety standards to ensure that the 

likelihood of accidents is minimal, history shows that severe nuclear accidents can 

occur under unexpected circumstances. Since the first operation of a nuclear power 

plant for commercial use, in 1954, accidents involving meltdown have occurred at 

three nuclear power plants: Three Mile Island, USA (in 1979); Chernobyl, Ukraine (in 

1986); and Fukushima Daiichi, Japan (in 2011). 

These accidents underscore the importance of adequate preparedness and 

response for the management of and recovery from the aftermath of these accidents. 

Since the time of the Chernobyl accident, international guidelines for preparedness 

and response to nuclear emergencies have evolved and have contributed to the 

implementation of successful countermeasures against radiation exposure from and 

adverse health effects of nuclear accidents. However, new challenges emerge as 

technology, knowledge, and views change; therefore, guidelines for nuclear accident 

preparedness and response are continuously changing and being updated. 

Nuclear accidents may result in a release of radionuclides into the environment 

and contamination of surrounding areas, including leafy vegetables, air, open water 

sources, and soil. These radionuclides can be inhaled by humans, penetrate into a 

human body, or be ingested via contaminated foodstuffs, including milk and water. It 

has long been scientifically established that exposure to ionizing radiation can cause 

adverse health effects. Epidemiological studies, for example, have shown that 

increased exposure to ionizing radiation is associated with increased risk of various 

diseases, including cancer. An increase in the incidence of thyroid cancer among 

residents who were exposed to ionizing radiation during childhood or adolescence is 

a well-documented health consequence of the Chernobyl accident. 

Given the established association of thyroid cancer risk with radiation exposure, 

particularly during childhood and adolescence, public fears about thyroid cancer and a 

high interest in examination of the thyroid are likely after any future nuclear accident. 

Therefore, appropriate preparedness and response regarding thyroid cancer-related 

issues are crucial. After the Fukushima Daiichi accident and the Chernobyl accident, 

thyroid examinations of the affected children and adolescents were performed. The 
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extensive efforts that were made after the respective accidents yielded knowledge 

and lessons learned, which are invaluable in guiding preparations for any future nuclear 

accidents. 

Although it is the goal of every country to maintain safe nuclear facilities, the 

accidents at Three Mile Island, Chernobyl, and Fukushima are reminders of the real 

possibility of an accident and the importance of establishing guidelines for how to 

plan and implement thyroid health monitoring after nuclear accidents. There is 

continuing discussion about the potential issue of overdiagnosis (i.e. detection of 

thyroid cancer that would have remained asymptomatic and been undetected during 

a person’s lifespan) as a result of thyroid screening, as well as questions about the 

benefit of an early diagnosis of thyroid cancer, which is known to have a very 

favourable prognosis for the majority of patients. With this in mind, IARC convened a 

multidisciplinary, international Expert Group to develop recommendations on long-

term strategies for thyroid health monitoring after nuclear accidents based on the 

current scientific evidence and previous experiences. 

2.2 Aims and scope 

This report addresses a specific aspect of emergency preparedness for and 

response to the release of volatile radionuclides, in particular radioiodine, from a 

nuclear facility into the environment, resulting in the exposure of the population living 

in the vicinity of the facility. To date, all instances where this has occurred and has 

involved a large population were caused by nuclear power plant accidents, hereafter 

referred to as “nuclear accidents”. 

2.2.1 Aims 

The multidisciplinary, international Expert Group aimed to: (i) develop 

recommendations on long-term strategies for thyroid health monitoring after a 

nuclear accident based on experiences from past nuclear accidents, as well as 

current scientific knowledge on cancer screening in general and thyroid cancer in 

particular, and on the incidence, pathology, treatment, and outcome of thyroid cancer 

in general and in the context of radiation exposure; and (ii) identify knowledge gaps 

that need to be addressed to better guide the planning and implementation of thyroid 

health monitoring after nuclear accidents. 
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2.2.2 Scope 

The forward-looking recommendations of the Expert Group are intended to 

specifically address whether thyroid health monitoring should be implemented in a 

resident population in the vicinity of a nuclear accident and, if so, how such thyroid 

health monitoring should be prepared for and implemented. Thyroid health 

monitoring for emergency workers is not addressed in this report. 

These recommendations have been developed for countries that produce nuclear 

power or their neighbouring countries, with the intention to serve as a reference 

primarily for the government officials, policy-makers, and health professionals who 

would be involved in the decision-making, planning, or implementation of thyroid 

health monitoring. The Expert Group acknowledges that decision-making may also 

require considerations other than the scientific evidence. Therefore, the Expert 

Group’s recommendations should be used as a reference; the final decision should 

be made by the government, the relevant authorities, and the society affected by the 

nuclear accident. 

The Expert Group’s recommendations should not be confused with the 

recommendations developed by the different international bodies for emergency 

preparedness or for radiation protection after nuclear accidents. For the overall 

guidelines on emergency preparedness and response in the case of radiological and 

nuclear accidents, readers are referred to the international safety standards 

published by the International Atomic Energy Agency (IAEA, 2006, 2014a, 2015a), 

the World Health Organization (WHO, 2017a), the International Commission on 

Radiological Protection (ICRP, 2009), and other international organizations. 

Lastly, the Expert Group would like to stress that this report is not an evaluation 

of the thyroid health monitoring activities that were implemented after the past 

nuclear accidents, and does not include any recommendations related to thyroid 

health monitoring activities currently in progress, in particular the Fukushima Health 

Management Survey. 

This report contains the Expert Group’s recommendations and considerations 

related to thyroid health monitoring in the context of preparedness for and response 

to nuclear accidents (Chapter 3), summaries and syntheses of the scientific evidence 

base used by the Expert Group when developing the recommendations (Chapter 4), 

and the identified gaps in scientific knowledge (Chapter 5). 
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2.3 Approach 

The multidisciplinary, international Expert Group was convened by IARC to 

develop the recommendations according to the objectives outlined in Chapter 2.2. 

The Expert Group consisted of 14 experts from a variety of scientific and medical 

disciplines, including cancer screening, radiation epidemiology, radiation dosimetry, 

pathology, endocrinology, nuclear medicine, and surgery, and was supported by 

three Specialists, four Advisers, and an IARC Scientific Secretariat (the Expert 

Group Chair and the Scientific Coordinator). The available evidence was reviewed 

by subject-specific experts and is presented as a series of chapters as a basis for 

recommendations by the authors of this Technical Publication. Specialists were 

invited to provide additional input to specific chapters, in collaboration with chapter 

authors. Advisers contributed to the discussions but did not have designated writing 

responsibilities. 

For the preparation of this report, three in-person meetings were held at IARC in 

Lyon, France. The first Expert Group meeting was held on 23–25 October 2017 to 

discuss the current scientific evidence, as well as lessons learned from past nuclear 

accidents. Afterwards, the members of the Expert Group generated drafts for the 

Scientific Evidence chapter. On 25–26 January 2018, a meeting with a subgroup of 

the Expert Group was held to synthesize the evidence and prepare the first draft of 

the recommendations. The first drafts of the Introduction, Scientific Evidence, and 

Recommendations chapters were then shared with and reviewed by the whole 

Expert Group. On 21–23 February 2018, the second Expert Group meeting was held 

to discuss the details of the report and modify it further. After this meeting, the draft 

was further revised based on the decisions made. The present report was reviewed 

and approved by the authors of the Expert Group in August 2018. 

Randomized controlled trials (RCTs) are often used as the strongest evidence 

when developing evidence-based public health guidelines. However, because RCTs 

are unlikely to be applicable to an evaluation of emergency preparedness for or 

response to environmental hazards, such as radiation exposure due to nuclear 

accidents, this report was generated based on the Expert Group’s collective 

assessment and interpretation of the evidence from observational studies. 
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CHAPTER 3. Recommendations on thyroid health monitoring in 
case of nuclear accidents 

Emergency preparedness and response regarding thyroid-related issues are 

critical in mitigating adverse health effects that can occur as a result of both a 

nuclear accident and measures that might be put in place afterwards intended to 

promote the well-being of the population. The guiding principle for any health 

intervention should be to maximize benefit and minimize harm, and this approach 

should also be considered with respect to thyroid health monitoring. 

With this in mind, the Expert Group developed the following forward-looking 

recommendations on thyroid health monitoring after nuclear accidents. The 

recommendations are based on experiences from past nuclear accidents, as well as 

the state of scientific knowledge on cancer screening in general and thyroid cancer 

in particular. Published data, and expert opinion when data were not available, on 

the incidence, pathology, screening, treatment, and outcome of thyroid cancer in 

general and in the context of radiation exposure, were summarized and used in the 

creation of the recommendations. 

Although these recommendations are intended to specifically address whether 

and how thyroid health monitoring should be conducted in case of a nuclear 

accident, the Expert Group recognizes the great importance of considering additional 

areas of preparedness and response to optimize the decision-making process, 

planning, or implementation of thyroid health monitoring. 

The Expert Group also recognizes that decisions about thyroid health monitoring 

after a nuclear accident may take into account aspects beyond the scientific 

evidence, including socioeconomic and health-care resources, as well as social 

values unique to each potential situation and local population. Therefore, the 

recommendations of the Expert Group should be used as a reference and the final 

decisions should be made by the respective government(s), the relevant authorities, 

and the society affected by the nuclear accident within this greater context. 
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Recommendations 

Recommendation 1: The Expert Group recommends against population thyroid 

screening after a nuclear accident. 

Recommendation 2: The Expert Group recommends that consideration be given to 

offering a long-term thyroid monitoring programme for higher-risk individuals after a 

nuclear accident. 

Explanation and elaboration 

1. Population thyroid screening 

The Expert Group defines “population thyroid screening” as actively recruiting all 

residents of a defined area to participate in thyroid examinations through either 

ultrasonography or palpation and subsequent diagnostic or follow-up tests as 

indicated. This includes population thyroid screening for children and adolescents. A 

key aspect of this definition is that the starting point for the screening is at the 

population level; namely, recruiting all eligible subjects in a defined population 

irrespective of any thyroid radiation dose assessment. 

The Expert Group recommends against population thyroid screening, because 

the harms outweigh the benefits at the population level. There is evidence from 

observational studies in adults that thyroid screening leads to overdiagnosis with no 

mortality reduction. Data on thyroid cancer biology suggest that this may also be true 

for children and adolescents. Radiation-induced thyroid cancer, as suggested by 

data from the Chernobyl accident, appears to have a similar favourable prognosis as 

sporadic thyroid cancer. Therefore, screening populations of children and 

adolescents regardless of risk levels (i.e. thyroid radiation dose) is expected to also 

result in issues related to overdiagnosis without clear public health benefits. 

For further details, please refer to Chapter 4.1, Chapter 4.2.2, Chapter 4.3.1–

4.3.4, and Chapter 4.4.1. 

2. Thyroid monitoring for higher-risk individuals 

The Expert Group defines a “thyroid monitoring programme” as including 

education to improve health literacy, registration of participants, and centralized data 

collection from thyroid examinations and clinical management. Thyroid monitoring is 

an elective activity offered to higher-risk individuals, who may choose how and 

whether to undergo thyroid examinations in an effort to benefit from early detection 

and treatment of less advanced disease. A thyroid monitoring programme is distinct 
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from population screening, with the starting point being the individual instead of the 

population. 

The Expert Group defines “higher-risk individuals” as those exposed in utero or 

during childhood or adolescence with a thyroid dose of 100–500 mGy or more. 

Evidence suggests a dose–response relationship with increasing thyroid cancer risk 

with increasing thyroid dose. In an effort to balance the potential harms of excessive 

thyroid monitoring with identification of the highest-risk cases, the Expert Group 

proposes a thyroid dose of 100–500 mGy for a practical definition of an actionable 

level to offer inclusion into the long-term thyroid monitoring programme. Ideally, the 

thyroid doses should be determined by measurements of thyroid radioiodine content. 

For individuals with no direct measurements, dose estimations from modelling 

exposure and contributing factors, such as iodine status or incorporation of iodine 

thyroid blocking (ITB), should be applied rather than assuming exposure simply due 

to geographical area of residence. 

The recommendation of the Expert Group of establishing a thyroid dose 

actionable level does not mean that nothing should be offered to an individual below 

this exposure level. If an individual with lower dose is willing to have or interested in 

having a thyroid examination, after receiving a detailed explanation of potential 

benefits and harms, then they should be offered a thyroid examination in the 

framework of the long-term thyroid monitoring programme. 

Within the thyroid monitoring programme, there should be a shared decision-

making process between individuals, families, and clinicians about whether and how 

to engage in thyroid examinations. Under the principle of “people-centred health 

services”, the potential benefits and harms of examining the thyroid by either 

palpation or ultrasonography in asymptomatic individuals should be discussed with 

the support of well-designed educational materials to optimize informed decision-

making consistent with the person’s values, preferences, and context. 

Well-informed individuals who elect to participate in monitoring should receive 

high-quality services from qualified medical professionals in an organized monitoring 

programme, with governmental authority oversight, quality assurance, and a 

financing strategy. 

For those who decide to undergo thyroid examination, care should be taken to 

communicate findings without causing undue anxiety: communication should be 

timely and should avoid creating labels for findings with no clinical significance, such 

as findings of normal anatomical variations. To minimize potential harms of thyroid 
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examinations, management strategies of abnormal findings from examining the 

thyroid (i.e. a thyroid nodule) should not differ from those that would be applied to 

non-radiation-exposed persons in accordance with published guidelines. 

There is evidence that thyroid cancer risk from radiation exposure during 

childhood or adolescence continues into adult life. The Expert Group proposes that 

thyroid monitoring of the identified higher-risk individuals should be initiated as soon 

as is practically feasible and should extend through adulthood. Intervals between 

individual thyroid examinations may range between 2 years and 5 years and can be 

adjusted based on clinical findings and screening modalities. Benefits and harms of 

thyroid examinations should be balanced against the presence of comorbidities, and 

a decision to stop should be an informed individual choice. 

For further details, please refer to Chapter 4.3.1, Chapter 4.3.2, Chapter 4.3.4, 

Chapter 4.5.4, Chapter 4.6.5, and Chapter 4.6.6. 

Remarks 

The practical definition of an actionable level defined above for offering the long-

term thyroid monitoring programme should not be confused with radiation protection 

limits from international bodies such as the International Commission on Radiation 

Protection. In fact, the recommended thyroid dose of 100–500 mGy as an actionable 

level is higher than those proposed for implementation of protective actions to 

minimize the risks of radiation exposure. Furthermore, the Expert Group wishes to 

clarify that the choice of a thyroid dose range reflects the option to be more inclusive 

(lower actionable levels) or to be more efficient (higher actionable levels) in 

monitoring and identifying radiation-associated thyroid disease in higher-risk 

individuals. The Expert Group acknowledges that further research is necessary and 

the optimal actionable level might need to be revised as new evidence emerges. 

Considerations 

General consideration 

Monitoring infrastructure to assess the likely health consequences of release of 

any toxic (including radioactive) substances 

According to good practice of public health monitoring of the general population, 

infrastructure needs to be in place to monitor the incidence of disease and the well-

being of the resident population when there is a potential risk of exposure to a toxic 

substance from any industrial activity, including radiation. Therefore, the Expert 
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Group strongly supports the creation of, and continued investment in, accurate 

national health registries, including cancer registries. Such registration systems allow 

for characterization of geographical variation and trends in disease incidence and 

prevalence in the event of an accident with the release of toxic substances. Within 

the context of thyroid cancer and a nuclear accident, without accurate, baseline (pre-

event) population data, there is a limited ability to identify and quantify a potential link 

between radiation exposure and a change in the incidence or prevalence of a 

disease. Mechanisms need to be in place to serially monitor both the physical and 

the mental health of the residents and the evacuated population in case of a nuclear 

accident. This includes specifically: 

• an accurate and regularly updated census of the population, to enable timely 

identification of the potentially affected population; 

• information on the general health of the resident population, for example 

through periodic evaluation of health indicators or systematic linkage of health 

records with the population registry (World Health Organization [WHO] 

guidance on civil registration and vital statistics; 

http://www.who.int/healthinfo/civil_registration/en/); and 

• knowledge of baseline cancer rates, ideally from a population-based cancer 

registry, in line with the quality indicators of the IARC Global Initiative for 

Cancer Registry Development (GICR; http://gicr.iarc.fr/). 

Considerations specific to release of radioactive substances, and radioiodine 
in particular 

Dosimetric monitoring in case of a radiological or nuclear accident involving 

release of radioiodine 

Accidents at nuclear facilities release several different radionuclides, but of major 

significance to the future health of the general population is radioiodine and the 

resultant radiation exposure to the thyroid gland. 

The health consequences to the thyroid from a nuclear accident are dependent 

on the thyroid dose that the individuals have been exposed to, particularly from 

radioiodine. Initially, to assess the probable severity of the consequences in any 

affected population of a given geographical location, information is needed on the 

magnitude and timing of the release from the nuclear facility as well as 

meteorological attributes that predict wind transport of radioactive materials. 

Furthermore, certain measures and expertise that allow for an accurate and timely 

http://www.who.int/healthinfo/civil_registration/en/
http://gicr.iarc.fr/
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assessment of individual doses of radioactive iodine to the thyroid gland are required 

in order to better understand the potential thyroid cancer risk and to identify higher-

risk individuals. 

Trained professional staff should be available to measure and to assess the 

thyroid radioiodine content (i.e. thyroidal 131I content) of individuals as soon as 

possible, preferably within 4 weeks, but within 6 weeks after the nuclear accident at 

the latest (if the equipment’s minimum detectable activity of 131I in the thyroid is smaller 

than 500 Bq, the assessment may be conducted later than 6 weeks after the accident). 

This should be carried out on a sufficiently large representative sample of the 

affected population to give a useful overview of exposures for a better understanding 

of the dominant pathways of exposure. Direct measurements of thyroid radioiodine 

content of the exposed population are essential, with priority given to children and 

adolescents (younger than 19 years) and women pregnant at the time of exposure. 

When it is not possible to measure the thyroid radioiodine content of the infants, 

measurements of breast milk should be obtained from women who are 

breastfeeding. If resources are available, thyroid measurements in adults exposed to 

higher doses of radioiodine are also very informative, because they enable the 

determination of additional factors to those observed in children that may be 

important in estimating dose, including the dominant pathway of exposure. 

Adequate radiation measurement devices and guidelines and training for their 

use, along with basic questionnaires on diet and behaviour, should be available. The 

questionnaire should be completed by at least those individuals who undergo 

measurements of thyroid radioiodine content. 

For further details, please refer to Chapter 4.5.3 and Annexes 1 and 2. 

Oral administration of potassium iodide (thyroid blocking) given to minimize 

uptake of radioiodine by the thyroid 

WHO guidelines on ITB in case of a nuclear emergency provide 

recommendations on administration of potassium iodide (KI) (WHO, 2017a). The 

planning basis for this protective action is provided in the International Atomic 

Energy Agency safety standards (GSR Part 7; IAEA, 2015a) with regard to the 

avertable thyroid dose at which KI administration should be considered. It should be 

noted that in case of emergency, KI should be administered before or shortly after 

the beginning of exposure to radioactive iodine, with the priority given to children, 

pregnant women, and breastfeeding women. A properly implemented ITB 
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programme, coupled with other interventions such as sheltering, evacuation, and 

monitoring of food and drinking-water, will effectively reduce uptake of radioactive 

iodine in the affected population, especially children. 

For further details, please refer to Chapter 4.5.2. 

Education/risk communication to the population living in the vicinity of a nuclear 

power plant 

Ongoing education of health professionals and the general public living and/or 

working in the vicinity of a nuclear plant, with respect to exposure and radiation 

health effects, in times when there is no immediate risk, is essential to ensure timely 

implementation of urgent protective actions in case of a nuclear accident, and to 

prevent unjustified and possibly harmful interventions. Early and ongoing stakeholder 

dialogue, including risk communication, is important, as evidenced by other public 

health emergencies, such as infectious disease outbreaks. Risk communication is an 

integral part of any public health emergency response and will engender trust 

between community groups. It should be ensured that the local population, including 

relevant professionals, is aware of what actions to take in the event of a release of 

radiation from a nuclear power plant. This includes specifically: 

• sheltering and evacuation plans; 

• withdrawal of contaminated food, milk, and water; 

• ITB instructions, including distribution locations for KI, dosage, and timing of 

administration; 

• measurement of the thyroidal 131I content; 

• what thyroid monitoring might entail, basic information about the evaluation 

and diagnosis of thyroid nodules and thyroid cancer, as well as baseline 

prevalence for the population; 

• having established reliable and known communication channels for the public 

(e.g. newspaper, radio, television, website, text, email, and new media), as 

well as call centres for access to risk communication experts available to 

manage information sharing; and 

• having established on the government level (e.g. federal or regional 

government) a coordination centre supervising the long-term monitoring of the 

health status of the population exposed to radiation as a result of a nuclear 

accident, as endorsed in the above-mentioned considerations, with the key 

functions of ensuring high-quality data collection on radiation (space and 
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time), health in the population, and the implementation of countermeasures to 

mitigate any risk, as well as preparation of periodic press releases. 

For further details, please refer to Chapter 4.3.1, Chapter 4.3.4, Chapter 4.5.2, 

Chapter 4.5.3, and Chapter 4.6.6. 
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CHAPTER 4. Scientific evidence 

4.1 Pathology, natural history, and risk factors for thyroid cancer 

The thyroid gland is an endocrine gland that is situated in the base of the neck 

and produces hormones that regulate the body’s metabolism. The thyroid is 

composed of two epithelial cell types: follicular cells and parafollicular cells (C cells). 

Structurally, the gland is composed of spherical follicles, which consist of a single 

layer of follicular cells and a lumen filled with colloid. The colloid contains a large-

molecular-weight protein, called thyroglobulin, within which the iodine-containing 

thyroid hormones triiodothyronine and thyroxine are stored until they are released 

into the circulation. The C cells, which are located in the centre of the thyroid gland 

and behind the follicular cells lining the lumen of the follicle, are responsible for 

secretion of calcitonin and are involved in the regulation of bone metabolism. 

The stable (non-radioactive) form of iodine (127I) is present at low levels in the 

natural environment and is ingested in food and passes into the bloodstream. To 

ensure that there is always sufficient iodine for thyroid hormone production, the 

thyroid operates a mechanism that both concentrates iodine from the circulation and 

binds it within the follicular lumen. There is a natural flow of iodine in and out of the 

gland, and this gives rise to a biological half-life for iodine (the time taken for half of 

the atoms of iodine entering the follicular cell to pass back out) of 60–80 days. 

The thyroid follicular cells give rise to two distinct morphological types of 

differentiated cancer – papillary thyroid cancer (PTC) and follicular thyroid cancer 

(FTC); PTC is the more common of the two. The two morphological types show 

differences in both molecular biology and clinical characteristics, although both 

produce thyroglobulin (Xing, 2013). The C cells give rise to medullary thyroid cancer 

(MTC), which is identified by its production of calcitonin; this distinguishes MTC from 

the tumours derived from the follicular cells (PTC and FTC). PTC, FTC, and MTC 

can give rise to a more poorly differentiated version of thyroid cancer, and the 

cancers of follicular origin (PTC and FTC) may dedifferentiate to the highly 

aggressive anaplastic thyroid carcinoma. 

FTCs occur less frequently than PTCs and do not show the classic nuclear 

features associated with PTCs. They can, however, show a variety of morphologies, 

such as macrofollicular or microfollicular structures within the tumour. FTCs more 

commonly invade and metastasize via the venous system, whereas PTCs tend to 

invade and metastasize through the lymph vessels. In contrast to PTCs, FTCs are 
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thought to arise in pre-existing benign lesions called follicular adenomas. However, 

because the purpose of this volume is to discuss the monitoring of the at-risk 

population after a nuclear accident, the focus here is only on cancers of the thyroid 

follicular cells, and primarily on PTCs. 

PTC can also exhibit a variety of morphologies, including papillae that are formed 

by epithelial cells lining a fibroblastic core (the classic papillary subtype) and follicular 

structures that are similar to those of the normal thyroid but may be larger (macro) or 

smaller (micro) than the normal follicles (the follicular variant of PTC). PTCs 

composed of solid sheets of cells (solid variant PTC) are more common in children 

younger than 10 years at diagnosis and with a history of radiation exposure. Diffuse 

sclerosing variant PTC is also more common in children and young adults (younger 

than 30 years), with tumours characterized by prominent lymphocytic infiltration, 

stromal fibrosis, abundant psammoma bodies (dystrophic calcification), squamous 

metaplasia, and diffuse involvement of the thyroid without distinct formation of a 

nodule. However, although the architecture is variable, and sometimes more than 

one variant is present in a single cancer, PTCs all show altered morphology of the 

nucleus of the cell. This is the feature that distinguishes them from follicular cancers. 

The nucleus may be fissured into a coffee-bean shape, with hypodense chromatin 

that results in a ground glass appearance. The nuclei are often irregular and often 

contain inclusions of cytoplasm. The presence of these nuclear changes is 

diagnostic of PTC, but not all of the cells that compose the cancer may show these 

changes. Psammoma bodies are also a finding in PTC with high specificity. There is 

no benign precursor to PTC, so even very small tumours that occupy the equivalent 

of one or two normal follicles are regarded as cancers. In adults, PTC less than 1 cm 

in diameter is termed papillary thyroid microcarcinoma (PTMC); in children, there is 

no such distinction. 

Both PTCs and follicular carcinomas are associated with activating mutations in 

the mitogen-activated protein kinase (MAPK) pathway that lead to the dysregulated 

growth associated with cancer. PTCs are commonly associated with point mutations 

of the BRAF oncogene in adult patients, whereas in childhood PTCs, 

rearrangements of the RET oncogenes are more common (Vaisman et al., 2011a). 

The RET oncogene is normally silent in follicular cells; rearrangement of part of the 

gene to a promoter region of other genes that are active in the follicular cell leads to 

constitutive activation of the MAPK pathway via RET gene signalling. Follicular 

cancers are associated with point mutations in other genes in the MAPK pathway 
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(e.g. RAS) or with rearrangements of PPARg. A recent comprehensive study on 

primarily adult-onset PTC confirmed the association between molecular biology and 

subtype of PTC, as well as the higher frequency of fusion events found in PTCs in 

younger patients, although only 44 patients younger than 30 years at diagnosis were 

studied, and no patients younger than 19 years were included (Agrawal et al., 2014). 

That study also showed that PTCs in older adults tend to have more genetic 

alterations than PTCs in younger patients. This might indicate a slow accumulation 

of genetic errors over time in a slowly growing tumour. The greater genetic 

heterogeneity seen in PTCs in older patients may contribute to a tendency for more 

widespread metastases and the ability for a tumour to grow in a variety of metastatic 

sites, as well as a loss of the key marker of a differentiated thyroid cell – the ability to 

take up iodine. The ability of the tumour to absorb iodine (to maintain differentiation) 

explains why PTCs in younger patients can only be considered as either stage 1 or 

stage 2, as determined by the American Joint Committee on Cancer staging system, 

because even patients with extensive lung metastases show low disease-specific 

mortality compared with older patients with a similar extent of disease. The increase 

in the genetic heterogeneity of PTCs in older patients might be regarded as support 

for the early-onset, multistep carcinogenesis theory of thyroid carcinogenesis 

(suggested by Williams, 2015), rather than being the result of a late-onset, multistep 

process or of the presence of retained fetal stem cells in the thyroid (reviewed in 

Takano, 2017). The cribriform-morular variant of PTC associated with familial 

adenomatous polyposis (FAP) is often multicentric and with lymph node involvement, 

but is usually clinically indolent and has also been shown to spontaneously regress, 

which suggests that some PTCs do have a limited growth potential. This also lends 

weight to the argument that multiple genetic alterations contribute to the clinical 

phenotype of PTC. 

Several risk factors are associated with developing thyroid cancer, including 

environmental factors, a history of radiation exposure, and familial tumour 

predisposition syndromes. In geographical areas where the population has a low 

dietary intake of stable iodine, there is a higher incidence of goitre and follicular 

cancer, which is believed to be related to chronic stimulation of thyroid-stimulating 

hormone. However, in children, exposure to radiation, including radioiodine, is 

probably the major risk factor for an increase in the incidence of tumours of the 

thyroid follicular cells, particularly PTC. Age at exposure has an effect on radiation 

dose, because of the relatively small size of a child’s thyroid. Iodine deficiency also 
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has an effect on radiation dose, because an unsaturated thyroid will take up more 

radioactive iodine and therefore the dose is increased (Iglesias et al., 2017). In the 

immediate aftermath of the Chernobyl accident, there was concern that radiation-

induced thyroid cancer in exposed children tended to be more aggressive, with more 

extensive local invasion, lymph node involvement, and distant metastases than in 

non-exposed children. However, subsequent analysis suggests that this observation 

was related to several variables, including the increased number of children younger 

than 10 years at the time of exposure, chronic exposure to radioiodine in an iodine-

deficient population, and the initial lack of an active surveillance programme for 

patients at increased risk of developing thyroid cancer. When the clinical 

presentation of exposed and non-exposed children of the same age was compared, 

the suspected difference in clinical aggressiveness could not be proven (Pacini et al., 

1997; Williams et al., 2004; Reiners et al., 2013). 

There are several hereditary conditions that are associated with increased risk of 

thyroid cancer of different cellular origins. A germline activating mutation in the RET 

oncogene is associated with an increased risk of developing MTC, which in 

paediatric patients is most commonly associated with multiple endocrine neoplasia 

type 2. There are also inherited medical conditions that are associated with an 

increased risk of tumours of the follicular cells. These include PTEN hamartoma 

tumour syndrome (Cowden’s disease), which is caused by germline mutations in the 

PTEN gene; DICER1 pleuropulmonary blastoma syndrome; Carney complex type 1, 

which is caused by germline mutations in the PRKAR1A gene; and FAP. FAP is 

primarily associated with tumours in the colon and is caused by a loss of one copy of 

the APC gene on chromosome 5. A rare variant of PTC, the cribriform-morular 

variant, is identified almost exclusively in some, but not all, females with FAP (Cetta, 

2015). There are also documented families that have an increased incidence of 

tumours of the follicular cells of the thyroid (familial FTC or PTC) but do not harbour 

any of the germline mutations listed above. It is thought that the genes responsible 

may lie on chromosomes 1 and 19, but the individual genes have not yet been 

identified. The risk of familial FTC and PTC increases with having two or more first-

degree relatives with thyroid cancer in families without a known inherited familial 

tumour predisposition syndrome. 
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4.2 Epidemiology of thyroid cancer 

4.2.1 Incidence and mortality rates of thyroid cancer 

Current incidence and mortality rates around the world 

Thyroid cancer incidence varies dramatically by country and level of social and 

economic development (Fig. 1 and Fig. 2), with elevated incidence rates observed in 

countries with a higher Human Development Index. Age-standardized incidence 

rates of thyroid cancer vary more than 50-fold, from a high of 53 per 100 000 in the 

Republic of Korea to less than 1 per 100 000 in Malawi and other countries (Ferlay et 

al., 2013). Thyroid cancer is less commonly diagnosed in children and adolescents 

compared with adults. The most common type of thyroid cancer is PTC, followed by 

FTC. For example, in the USA, the proportions of PTC and FTC are 84% and 11%, 

respectively (Lim et al., 2017). The majority of thyroid cancer cases are either 

localized within the thyroid or have regional lymph node disease at the time of 

diagnosis (Howlader et al., 2017). 

 

 

 

 

 

 

 

Fig. 1. Age-standardized incidence and mortality rates of thyroid cancer in 2012 by Human 
Development Index (extracted from Ferlay et al., 2013). Human Development Index is a 
composite index measuring average achievement in three basic dimensions of human 
development: life expectancy, education, and per capita income 
(http://hdr.undp.org/sites/default/files/hdr2016_technical_notes.pdf).  

http://hdr.undp.org/sites/default/files/hdr2016_technical_notes.pdf
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Fig. 2. Age-standardized incidence and mortality rates of thyroid cancer in 2012 by country 
(extracted from Ferlay et al., 2013). Countries were selected to illustrate the variation in the 
thyroid cancer incidence rate across countries. 

Mortality rates are almost always low, about 1 per 100 000 or less (Fig. 1 and 

Fig. 2). Notably, even among countries with a higher incidence rate than 10 per 

100 000, the mortality rates are mostly less than 1 per 100 000 (Ferlay et al., 2013). 

Although thyroid cancer mortality appears to be somewhat higher in countries with a 

lower Human Development Index, the socioeconomic gradient is not monotonic. 

Overall, the thyroid cancer survival rate is excellent. For example, in adult patients 

younger than 55 years, the expected 10-year disease-specific survival is 98–100% 

for localized or regional disease and 85–95% for distant metastases (Perrier et al., 

2018). PTC, the type which is of concern after exposure to radiation, has a 

particularly high survival rate; 97–99% of patients with PTC limited to the thyroid 

gland are alive 20 years after diagnosis (Davies and Welch, 2010; see 

Chapter 4.4.2). 

Relative to other cancers such as those of the breast, prostate, colon, and lung, 

deaths due to thyroid cancer are rare. Because of the small numbers, the estimated 

mortality rates can become unstable and highly variable across countries and over 

time. Furthermore, the quality of registries, including cancer registries and cause-of-

death registries, can also influence the estimates and contribute to the variations. 

Together, these facts underscore the need to maintain high-quality, ideally 

population-based, cancer registries, from which changes in incidence or mortality 

over time can be understood in the local context. 
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As described in Chapter 4.1, the main established environmental risk factor for 

thyroid cancer is exposure to radiation, especially during childhood and adolescence. 

The increased risk of thyroid cancer has been shown to persist for at least five 

decades after exposure during childhood in the follow-up of Japanese atomic bomb 

survivors (Furukawa et al., 2013). Although other proposed risk factors for thyroid 

cancer exist, such as exposure to volcanic metals, intake of nitrites, and obesity, the 

evidence is currently limited. The major source of the variation in incidence observed 

by country appears to be the result of access to health-care services, imaging, 

testing and surgical practices of the local health-care providers, and management of 

pathological specimens (Davies et al., 2015). Specifically, the more closely the 

thyroid gland is examined, the more thyroid cancers are found. The variations in 

thyroid cancer incidence observed across countries that are expected to have similar 

environments (e.g. lifestyle, radiation exposure) are therefore likely to be a result of 

the differences in the medical practices, particularly thyroid gland examination. This 

has been exemplified in countries where thyroid ultrasound examinations have 

become more common, such as the Republic of Korea (see Chapter 4.3.2). 

Recent trends in incidence and mortality 

During the past two or three decades, the incidence of thyroid cancer among 

adults has doubled, tripled, or more in several high-income countries worldwide (La 

Vecchia et al., 2015), and this is without proportionate increases in mortality (Davies 

and Welch, 2014; Davies et al., 2017; Lim et al., 2017). In middle-income countries, 

dramatic increases in incidence have also been seen in some areas, for example 

Brazil, China, and Turkey, as shown by the newly released Cancer incidence in five 

continents, Volume XI (Bray et al., 2017). Studies from a few of the countries with 

detailed registries show that almost the entire increase in the incidence has been 

due to the detection of PTC, the most common subtype. The size of the cancers now 

being detected is also notable: the majority of the increased incidence has come 

from the detection of PTCs ≤ 2 cm in diameter (Ahn et al., 2014; Davies and Welch, 

2014). Given that cancers of this size are usually difficult to detect through physical 

examination (palpation), the increased incidence of these small cancers is most 

likely to be because of the increased use of sensitive imaging technologies, such as 

ultrasonography and computed tomography (CT) scans, which is driven by the 

practice patterns of health-care providers (Davies et al., 2010; Brito et al., 2015). 
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Analyses performed specifically for this report showed that the incidence among 

children and adolescents (aged 0–19 years) in Denmark, France, Italy, the United 

Kingdom, and the USA increased from 1990 to 2005 in patterns that are similar to 

the time trends observed in adults (Fig. 3). During the same period, a total of 10 

deaths due to thyroid cancer were captured in the registries maintained by these 

countries. Because deaths due to thyroid cancer in children and adolescents are 

very rare, trends in mortality in these specific age groups are difficult to estimate. 

 

 

 

 

 

 

 

Fig. 3. Age-standardized incidence rates (per 100 000) of thyroid cancer for five selected 
countries, for individuals aged 0–19 years (extracted from Cancer incidence in five continents, 
Volume XI; Bray et al., 2017). 

4.2.2 Overdiagnosis and thyroid cancer 

Overdiagnosis is the identification of a (histologically confirmed) cancer as a 

result of testing that would not have been diagnosed if the testing had not taken 

place or would not have caused symptoms or death during the patient’s lifetime. The 

concept of overdiagnosis is important because it affects the utility of screening 

programmes (see Chapter 4.3.1). If a cancer is of the type in which overdiagnosis 

can occur, then not only significant cancers but also indolent cancers will be found 

as a result of a screening programme. Although screening programmes are usually 

thought of as beneficial because early detection of a cancer can lead to reduced 

mortality, people who have an indolent cancer identified in such a screening 

programme would undergo treatment without clinical benefit. It is not possible in a 

population screened for thyroid cancer to identify with certainty which cancers are 
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indolent and which cancers are clinically significant, and as a result if a screening 

programme was implemented (including after a nuclear accident), all cancers would 

need to be addressed as potentially significant. 

Evidence for thyroid cancer overdiagnosis 

The pattern described in Chapter 4.2.1 of the dramatically increasing incidence of 

thyroid cancer around the world, particularly of small cancers, with largely stable 

mortality rates, suggests that the main cause is overdiagnosis (Davies and Welch, 

2006). For overdiagnosis to occur, three factors must be present: (i) a reservoir of 

subclinical disease that is detectable by the screening test, (ii) a mechanism by 

which the tumours can be identified, and (iii) health-care activities that lead to the 

detection (Welch and Black, 2010). The necessary components for overdiagnosis of 

thyroid cancer are all present, as explained below. 

Thyroid cancer is a disease that is known to have a subclinical reservoir. 

Differentiated thyroid cancer (DTC) is commonly found at autopsy in people who 

died of other causes. Depending on the method of examination of the thyroid, about 

4% (partial examination) to 11% (whole examination) of thyroid glands can be shown 

to contain DTC, and this rate has been stable over time (Furuya-Kanamori et al., 

2016). 

Thyroid cancer also has a mechanism by which tumours can be found. 

Asymptomatic thyroid nodules are very common and are easily seen on medical 

imaging studies: up to 16% of CT scans and magnetic resonance imaging (MRI) 

scans that include the thyroid gland show nodules (Yoon et al., 2008), and with 

ultrasonography about two thirds of people will be found to have at least one nodule 

(Ezzat et al., 1994). Although radiation is known to cause thyroid cancer, along with 

several other candidate risk factors (see Chapter 4.2.1), the remarkable recent 

upward trend in incidence, particularly of small cancers, has been ascribed to 

identification of these asymptomatic nodules. 

Access to health-care services, the last component needed for overdiagnosis to 

occur in thyroid cancer, shows strong associations with rates of incidence (Ahn et al., 

2014; Davies et al., 2015; Davies, 2016; Vaccarella et al., 2016; Brito and Hay, 

2017). The larger the numbers of imaging tests ordered and the more health-care 

providers intervene for increasingly smaller findings, the more thyroid cancers are 

uncovered (Smith-Bindman et al., 2012; Udelsman and Zhang, 2014; Zevallos et al., 

2015). 
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Magnitude of thyroid cancer overdiagnosis 

A method to obtain estimates of the magnitude of thyroid cancer overdiagnosis 

has been described (Vaccarella et al., 2016). Briefly, the magnitude of overdiagnosis 

can be estimated by comparing the observed incidence rate with the expected 

incidence rate (i.e. the rate expected in the absence of advances in diagnostic 

technology). In the study by Vaccarella et al. (2016), the expected rate was 

estimated using historical incidence data from Nordic countries, combined with the 

assumptions of the multistage model of carcinogenicity of Armitage and Doll (Doll, 

1971) (Fig. 4). 

The same study concluded that a large fraction of thyroid cancer diagnoses in 

developed countries is likely to be due to overdiagnosis (Vaccarella et al., 2016). In 

women, this fraction could be as high as 70–80% in Australia, France, Italy, and the 

USA and 90% in the Republic of Korea, whereas in men the estimated fraction is 

about 70% in France, Italy, and the Republic of Korea and 45% in Australia and the 

USA. These estimates correspond to approximately half a million overdiagnosed 

thyroid cancer cases in 12 countries; the large majority of these patients underwent 

total thyroidectomy (with some also having lymph node dissections), and many also 

received radioactive iodine treatment. These numbers are useful for understanding 

the potential impact on populations and health-care systems if population screening 

were to be undertaken in a given area. It is important to note that distinguishing 

overdiagnosed cases from cancers destined to cause harm is not possible in 

practice. Even though some cases can be identified as likely to be more aggressive 

based on morphological characteristics, not all overdiagnosed cases are distinct 

from cases where treatment would improve the outcome. 
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Fig. 4. Observed versus expected changes in age-specific incidence of thyroid cancer per 
100 000 women, 1988–2007. Source: Vaccarella et al. (2016). Copyright © 2016, Massachusetts 
Medical Society. Reprinted with permission from Massachusetts Medical Society. 

Overdiagnosis in paediatric thyroid cancer 

Autopsy studies have shown that there is a subclinical reservoir of thyroid cancer 

in children older than 10 years (Franssila and Harach, 1986). In addition, baseline 

data from the Fukushima Health Management Survey showed higher rates of thyroid 

cancer than had previously been observed in cancer registries in Japan. Analysis of 

the data, comparing cancer rates with radiation exposure and expected time to 

cancer development, suggested that the detected cases may have been prevalent, 

subclinical cases, rather than radiation-induced cancers (Suzuki, 2016). 



 
37 

Furthermore, a simulation study using data from the Japan National Cancer Registry 

indicated that the number of thyroid cancer cases observed among individuals 

younger than 19 years can be expected in Fukushima under conditions of no nuclear 

accident (Takahashi et al., 2017). 

Now, recent data from the Fukushima Health Management Survey further 

suggest that among children and adolescents, it is possible to identify some thyroid 

cancers that might stop growing (Midorikawa et al., 2017a). This hypothesis comes 

from a mathematical model, and the analysis is limited by a short time frame and 

small numbers; therefore, it may not be possible to establish this for certain. 

Continued prospective surveillance will be needed for confirmation. If the hypothesis 

is confirmed, it is possible that the phenomenon of identifying clinically indolent 

thyroid cancers in adults might also apply to children and adolescents. 

4.3 Cancer screening 

4.3.1 Principles of cancer screening 

The goal of cancer screening is to reduce deaths and morbidity from cancer 

through early detection of cancer or prevention of malignant disease through the 

management of pre-cancerous lesions (e.g. cervical or colorectal cancers) (WHO, 

2002). Cancer screening can be a valuable public health strategy for improving 

population health when it is appropriately and effectively implemented. Benefits and 

risks of screening must be carefully assessed in an effort to avoid overestimation of 

potential benefits and unfounded risks from screening associated with no reduction 

in morbidity and mortality of the targeted disease (Auvinen and Hakama, 2014). 

The settings and circumstances in which cancer screening should be a priority 

require complex decision-making. The appropriateness (i.e. whether to screen, as 

well as whom to screen) and effectiveness (i.e. how to implement a screening 

programme) must be informed by the best available scientific evidence and social 

values and contextualized to a particular health system (WHO, 2007). 

Definition and types of cancer screening 

Cancer screening is the application of a screening test in a presumably 

asymptomatic population, to identify individuals with an abnormality suggestive of a 

specific cancer with the intent of reducing mortality and morbidity. It can be classified 

as organized or opportunistic, as well as population or selective screening. 
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An organized screening programme includes: coordination and centralization at 

the national or regional level; a protocol for screening frequency and identification of 

a defined target population; a mechanism to invite the target population and recall 

individuals with a screen-positive result; a robust health information system; and a 

mechanism for programme monitoring and evaluation (Taplin et al., 2006). If a 

programme does not meet the criteria for an organized programme but is still carried 

out, then it is classified as opportunistic (or unorganized). Generally, organized 

cancer screening is the most effective, equitable, and efficient approach to cancer 

screening. 

Failure to achieve the elements of organized screening can result in low 

participation rates, low quality of screening tests, and low rates of completion of the 

screening process. This, in turn, can significantly lower the effectiveness of the 

screening programme and potentially harm individuals through tests and treatments 

where there are potential risks of treatment-related complications, as well as the 

psychosocial impact of being a cancer survivor. It can also harm health systems by 

diverting essential resources and causing doubt about public health programmes, 

which can result in a loss of credibility. 

Population screening (or mass screening) is defined as large-scale screening of 

large target populations (or whole populations), usually regardless of risk, but with 

restrictions by sex, age, and geographical units. Selective screening, in contrast, 

provides a narrower definition of the target population, taking other predictive factors 

into account that increase the likelihood of finding disease in the asymptomatic 

population (i.e. screening of selected high-risk groups in the population). Selective 

screening may be more effective and less costly, and therefore less harmful, than 

population screening, but it requires a strong scientific evidence base on how to 

define such a selective target population. For the reasons of lower effectiveness and 

potential harms to individuals as described above, both population and selective 

screening are usually carried out as organized screening programmes. 

In contrast, monitoring, particularly as defined in the context of this report, is 

distinct from screening, with the starting point being the individual rather than the 

population; the same clinical examinations may be used in monitoring as in 

screening. The aim in both strategies is early detection of cancer in asymptomatic 

individuals, but the public health approach and objectives are distinctly different. 

Monitoring is defined here as an elective activity generally offered to higher-risk 

individuals who may choose how and whether to participate. These individuals could 
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potentially benefit from early detection by having treatment options of less advanced 

disease, although no benefit in terms of reduced mortality has been demonstrated. A 

monitoring programme includes education to improve health literacy, registration of 

detected cases, and individual clinical examinations and treatment. 

Monitoring may be a useful approach when an earlier diagnosis means that more 

treatment options are available, for example including less invasive procedures, less 

pain during treatment, shorter recovery from treatment, or other benefits. However, 

when there is no expected reduction in mortality for the patient, there should be a 

shared decision-making process between family and clinicians about whether and 

how to engage in a monitoring programme (including performing the clinical 

examinations). The decision is whether one would prefer to have an earlier 

diagnosis, to potentially reduce the aggressiveness of the treatment (without 

reducing the risk of dying from the disease), or not to search for the disease, with the 

possibility of more extensive treatment later in life but also the potential to never be 

diagnosed, and hence to undergo no treatment at all. 

The Expert Group notes that what is defined as “monitoring” in this report may be 

called “screening” in other publications, but prefers to keep the two processes clearly 

distinct by using the terminology introduced above to highlight the differences in 

objectives and programmatic targets (Table 1) and for the ease of keeping the two 

recommendations clearly distinct (see Chapter 3). 
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Table 1. Characteristics of screening and monitoring programmes as used in this report to 
better distinguish the recommendations (see Chapter 3) 

Characteristics Screening programme Monitoring programme 

Aims Early detection of disease in 
asymptomatic individuals 

Same as screening programme 

Objectives Reduce mortality and, if applicable, 
morbidity, with public health benefits 
outweighing the harms 

Empower higher-risk individuals to 
make an informed decision, with 
personal decisions about individual 
benefits outweighing the harms 

Recruitment 
approach 

Active recruitment Passive recruitment 

Recruitment 
goal 

Achieve high participation to ensure the 
effectiveness of the screening 
programme 

Shared decision-making between 
family and clinicians 

Participants Target population defined based on high-
quality scientific evidence 

Individuals who choose to participate 
after shared decision-making process 

Process Screening process with call mechanism 
through link to treatment 

Same as screening programme 

Evidence on 
effectiveness 

Well established for breast, cervical, and 
colorectal cancers 

None 

 
Deciding whether to develop a screening programme 

Whether to perform cancer screening should be determined by first assessing 

whether there is sufficient evidence to promote the screening among a defined target 

population. This decision should be based on the availability of a screening modality 

with high accuracy, effective treatment, and evidence to show a benefit of earlier 

diagnosis within the context of available resources of a particular health-care system. 

In 1968, criteria for screening were defined by Wilson and Jungner as an 

understanding of the epidemiological burden of the cancer, the biology of the cancer, 

the efficacy of the screening modality, and the health system capacity – including the 

accessibility and effectiveness of diagnosis and treatment (Wilson and Jungner, 

1968). If the screening criteria of Wilson and Jungner are not met or are not feasible, 

cancer screening should not be implemented. Modelling can be used to quantify the 

benefits, harms, and resource requirements (including cost) of screening in a 

particular setting, to inform policy-making. Public health officials may find that cancer 

screening is not cost-effective or that the health system infrastructure is insufficient 

to effectively deliver screening services. 

Public health decision-making in cancer screening must involve the community, 

as well as health-related regulatory and funding agencies. Cancer screening requires 

a balance of medical ethics principles – autonomy, beneficence, non-maleficence, 

and justice – and input from key stakeholders. Services should be integrated and 
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people-centred, consistent with guidelines from the World Health Organization 

(WHO) (WHO, 2015, 2016). Screening participants should be counselled on the 

potential risks and benefits of undergoing a screening test, as well as about 

alternatives to screening, including evidence-based, unbiased information, to allow a 

fully informed choice. This should be done before the initial test, because it is very 

difficult to halt the process after a positive screening result. Cancer screening is a 

significant and complex public health intervention; evidence-based decision-making, 

high-quality implementation, monitoring and evaluation, and community engagement 

are critical to its success. 

Potential benefits of cancer screening programmes 

There is well-established evidence from developed countries that cancer 

screening programmes for some types of cancer (e.g. cancer of the cervix, colon and 

rectum, and breast) can reduce cancer-specific mortality. The extent of the overall 

benefits varies with the type of cancer, the target populations, the screening 

modalities and frequency, the capacities and resources of the country or health 

system, and other factors, including social values. The type of cancer must meet the 

Wilson and Jungner criteria to confer a benefit to the screened population. 

Understanding the risk of a population cohort is particularly important to define a 

target population that is at high risk, in order to maximize the benefits and reduce the 

harms of cancer screening. A target population is generally established by an age 

range and, depending on cancer type, by sex, but can also be based on high-risk 

behaviours or exposures (e.g. tobacco use in lung cancer screening). Although the 

latter situation, as introduced above, is called selective screening, in the case of 

restricting the target population only by age, sex, and geography, it is still referred to 

as population (or mass) screening. 

Potential harms from cancer screening programmes 

There are generally three major potential harms to individuals from screening 

programmes. These can be partially mitigated through quality assurance practices. 

First, only a minority of individuals who receive a positive result from a cancer 

screening examination will ultimately be found to have cancer on subsequent 

diagnostic tests. A false-positive result can produce psychological harm, physical 

discomfort, or even injury when the subsequent diagnostic test is invasive, as well as 

significantly increase the resource requirements of a screening programme. An 

additional harm is the potential for overdiagnosis (see Chapter 4.2.2). Finally, a 



 
42 

poorly implemented screening programme can also cause harm through failure to 

access high-quality treatment, which may lead to suboptimal treatment outcomes. 

Routine monitoring and evaluation linked to quality assurance programmes can 

reduce harms from screening. It is recommended that 10–20% of the budget of a 

screening programme be allocated to monitoring and evaluation (Anttila et al., 2015). 

This mandates a strong health management information system that includes 

registration and tracking of participants and their outcomes, as well as collection of a 

minimum set of quality indicators for programme performance. 

Implementation of cancer screening programmes 

Population screening has been proposed or shown to be effective for various 

types of cancer in adults. According to the evaluation within the context of the 

European Code Against Cancer, participation in organized population screening for 

colorectal cancer for men and women, and cervical cancer and breast cancer for 

women, has been shown to reduce the risk of developing or dying from the 

respective cancer (Armaroli et al., 2015). Currently, implementation of these 

population screening programmes differs considerably across countries. For other 

cancers, such as population screening for prostate cancer and selective screening 

for lung cancer, the evidence on benefits and harms is not sufficient to recommend 

participation in screening activities outside of research projects. However, some 

countries recommend prostate cancer screening, and some have started selective 

lung cancer screening, using low-dose computed tomography (CT). Screening for 

thyroid cancer is discussed in depth in Chapter 4.3.2. 

The only childhood cancer type for which organized screening programmes have 

been implemented is neuroblastoma, mainly because there is an inexpensive, non-

invasive, and sufficiently accurate early detection method (urine catecholamine 

metabolites). The National Cancer Screening Programme in Japan, population-

based screening studies in Canada and Germany, and further pilot studies in several 

places in Europe and in the USA have shown that although there was an increased 

detection of early-stage neuroblastoma, there was no reduction in mortality or 

increase in survival in children with neuroblastoma. This finding is partly attributable 

to the peculiar natural course of neuroblastoma, with relatively frequent spontaneous 

regression of the tumour. The screening resulted in overdiagnosis, leading to 

unnecessary treatment with complications that sometimes resulted in death. 

Because of this, screening was discontinued and medical associations advised 
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against any screening for neuroblastoma (Schilling et al., 2003; Tsubono and 

Hisamichi, 2004; Shinagawa et al., 2017). 

4.3.2 Thyroid cancer screening 

In principle, there are two main ways to screen for thyroid cancer: through 

palpation or through ultrasonography. Palpation is a physical examination of the 

neck and surrounding lymph nodes. Ultrasonography imaging is a non-invasive test 

that is performed by a trained clinical provider. 

The characteristics of a screening test are one component of determining 

whether screening programmes are advisable. The sensitivity and specificity of 

palpation to detect thyroid nodules are dependent on the health professional 

administering it, but overall the sensitivity and specificity of this method are poor, 

with only about 40% of nodules larger than 15 mm in diameter palpable on physical 

examination (Wiest et al., 1998). The accuracy of the interpretation of the 

ultrasonography images depends on the degree of experience of both the 

sonographer and the person interpreting the images. When suspicious nodules are 

found by ultrasonography, they must be biopsied to confirm a malignancy. There are 

systems for categorizing both ultrasonography features of thyroid nodules and fine-

needle aspiration biopsy results to maximize the chances of accurate interpretation 

and stratification for the risk of malignancy (Haugen et al., 2016; Tessler et al., 

2017). For example, when the American Thyroid Association classification system is 

used to interpret the ultrasonography images of thyroid nodules, the reliability for 

indication to fine-needle aspiration is good, with diagnostic accuracy of 86% 

(Persichetti et al., 2018). For fine-needle aspiration biopsy results, using the 

Bethesda System for Reporting Thyroid Cytopathology criteria, the sensitivity, 

specificity, and diagnostic accuracy are 97%, 50.7%, and 68.8%, respectively 

(Bongiovanni et al., 2012). 

The goal of cancer screening is to reduce deaths and morbidity from cancer 

through early detection of cancer or prevention of malignant disease through the 

management of pre-cancerous lesions (see Chapter 4.3.1). Whether thyroid cancer 

screening reduces thyroid cancer-specific mortality has never been evaluated by any 

randomized controlled trial. There are, however, four observational studies that 

included mostly women in the Republic of Korea who underwent elective thyroid 

ultrasonography examination during screening or follow-up for breast cancer (Lin et 

al., 2017b). These studies represented opportunistic rather than population 
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screening, with the detection rate ranging from 9 to 30 per 1000 persons. Nearly all 

of the detected cancers were papillary thyroid cancer (PTC) (Lin et al., 2017a), the 

most common type of thyroid cancer and the type that was found in approximately 

11.2% (95% confidence interval, 6.7–16.1%) of autopsies in people who died from 

unrelated causes (Furuya-Kanamori et al., 2016). This suggests that screening 

activities are likely to identify indolent thyroid cancers that would not have affected a 

person’s health during their lifetime, as well as cancers that may be of clinical 

significance. In addition, analyses of trends in incidence and mortality of thyroid 

cancer across several countries show steep increases in incidence, probably related 

to opportunistic screening and greater use of imaging technology, and no 

measurable changes in mortality during the same period (see Chapters 4.2.1 and 

4.2.2). The most compelling example of this observation from the Republic of Korea 

is detailed later in this chapter. 

The United States Preventive Services Task Force (USPSTF) is an independent 

and widely respected panel of experts that systematically review evidence and 

develop recommendations for clinical preventive services. The USPSTF 

recommends against screening for thyroid cancer in otherwise healthy, 

asymptomatic populations (Bibbins-Domingo et al., 2017). This recommendation is 

based on concerns that screening for thyroid cancer in an adult population with no 

identified risk factors may be associated with the discovery of incidental, indolent 

thyroid tumours, as well as a lack of evidence to show a reduction in disease-specific 

mortality from early identification of thyroid cancers before clinical detection. The 

systematic review conducted to support the USPSTF in updating its 

recommendations on thyroid cancer screening concluded that although 

ultrasonography and fine-needle aspiration of identified nodules “can identify thyroid 

cancers, it is unclear if population-based or targeted screening can decrease 

mortality rates or improve important patient health outcomes” (Lin et al., 2017b). Key 

to the recommendation against screening is that screening identifies benign thyroid 

nodules and indolent thyroid cancers that subsequently need further interventions, 

which may increase the risk of patient harms, and that thyroid cancer is a disease 

with in general excellent prognosis and low mortality rate. However, this 

recommendation by the USPSTF does not apply to higher-risk populations (e.g. 

those at an increased risk of thyroid cancer due to a history of exposure to ionizing 

radiation, or inherited genetic syndromes associated with thyroid cancer). 
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The International Late Effects of Childhood Cancer Guideline Harmonization 

Group (IGHG) and the PanCare Childhood and Adolescent Cancer Survivor Care 

and Follow-Up Studies (PanCareSurFup) consortium evaluated evidence on benefits 

and harms of screening for differentiated thyroid cancer (DTC) in survivors of 

childhood, adolescent, and young adult cancer whose thyroid had been in the field of 

radiation exposure (at-risk survivors) (Clement et al., 2018). They did not 

recommend that all at-risk survivors be followed up with serial ultrasonography, 

because the benefit of early treatment in children is uncertain and ultrasonography 

can identify a benign nodule or indolent cancer, which can lead to potential harms 

(e.g. treatment without clinical benefit, side-effects caused by treatment, distress, 

and cost). The report, however, recommended that at-risk survivors should be 

counselled about the increased risk of thyroid cancer, as well as options (palpation 

vs ultrasonography) for thyroid screening, and that at-risk survivors be fully informed, 

be engaged in discussions, and be allowed to choose between screening with 

ultrasonography and screening with palpation, or to consider no active screening. No 

consensus was reached on the radiation dose that should trigger the thyroid 

screening programme or on the timing for when the programme should be initiated 

after exposure. 

There have been data showing some clinical utility of screening for thyroid cancer 

in high-risk populations within several different clinical contexts, including tumour 

predisposition syndromes associated with an increased risk of developing DTC and 

familial non-medullary thyroid cancer (FNMTC). The lifetime risk of developing 

thyroid cancer is 1–12% in familial adenomatous polyposis (Jasperson et al., 2017) 

and 35% in PTEN hamartoma tumour syndrome (Eng, 2001). In individuals with 

DICER1 syndrome, the risk of developing thyroid cancer is increased 16-fold 

compared with the general population (Khan et al., 2017). FNMTC is defined by the 

presence of two or more first-degree relatives with DTC; however, even in families 

with only one person previously diagnosed with DTC, there is a 9-fold risk of another 

family member developing DTC (Mazeh et al., 2012). For all of these syndromes, 

selective screening for DTC is initiated at the time of diagnosis, and in FNMTC, as 

an example, the incorporation of thyroid ultrasonography screening is associated 

with detection of smaller tumours and a lower rate of central neck lymph node 

metastasis, requiring less extensive surgery, and a lower rate of radioactive iodine 

therapy (Rosario et al., 2012; Klubo-Gwiezdzinska et al., 2017). 
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The thyroid screening experience after the Chernobyl accident may provide more 

salient and critical information on the potential benefit of thyroid screening for the 

present discussion on children and adolescents exposed to radiation after a nuclear 

accident. Two screening cohorts of children and adolescents who lived in areas 

contaminated by the Chernobyl accident were established in the mid-1990s: the 

USA–Belarus (BelAm) cohort and the USA–Ukraine (UkrAm) cohort. Using the data 

from these screening cohorts, various features of PTC were evaluated in relation to 
131I dose (Bogdanova et al., 2015; Zablotska et al., 2015a). The analysis of the 

BelAm cohort included 158 PTC cases diagnosed during three cycles of screening in 

1997–2008, and the analysis of the UkrAm cohort included 115 PTC cases, including 

104 cases diagnosed during four cycles of screening in 1998–2007 and 11 cases 

treated before the first cycle of screening. Both the BelAm and UkrAm studies 

concluded that higher thyroid doses of 131I may be associated with some features of 

tumour aggressiveness (e.g. lymphatic vessel invasion). Thyroid cancers that were 

diagnosed before the establishment of the screening cohort were more likely to be 

larger and more invasive, possibly associated with higher thyroid doses of 131I 

(Bogdanova et al., 2015). 

In a study of thyroid cancer treatment outcome in a cohort of Chernobyl-exposed 

Belarusian children and adolescents who received post-surgical radioiodine therapy, 

cancer outcomes were favourable even in those patients with advanced disease 

(Reiners et al., 2013). If, however, treatment of aggressive thyroid cancer at an 

earlier state brings other benefits, such as a need for less aggressive treatment (i.e. 

reduced extent of surgical dissection, reduced radioactive iodine therapy) and 

reduced risk of complications, then offering timely thyroid screening may be justified. 

However, the evidence is currently lacking on the benefit of early treatment in 

children and adolescents. Even within the present Expert Group, there is a debate 

about whether and how prospective data could be obtained to ultimately determine 

whether the benefits of selective thyroid screening outweigh the harms (e.g. 

overdiagnosis, treatment without clinical benefit, treatment-related complications, 

and anxiety due to diagnosis or false-positive test results) in a higher-risk population. 

Based on the available scientific evidence, the Expert Group recommends 

against population thyroid screening in case of a nuclear accident, because the 

harms outweigh the benefits at the population level (i.e. risk of overdiagnosis with no 

mortality reduction) (see Chapter 3). Population screening is defined herein as 

actively recruiting all residents of a defined area to participate in thyroid 



 
47 

examinations irrespective of any individual thyroid dose assessment (see 

Chapter 4.3.1 for the general definition of population screening). However, given the 

increased risk of thyroid cancer associated with exposure to ionizing radiation after 

nuclear accidents as well as the aforementioned potential clinical benefits of early 

disease detection in higher-risk individuals, the Expert Group recommends that 

consideration be given to offering a long-term thyroid monitoring programme for 

higher-risk individuals after a nuclear accident. A thyroid monitoring programme is 

distinct from population or selective screening, with the starting point being the 

individual instead of the population. Thyroid monitoring is an elective activity offered 

to higher-risk individuals, who may choose how and whether to undergo thyroid 

examinations and follow-ups in an effort to benefit from early detection and treatment 

of less advanced disease. In an effort to balance the potential harms of excessive 

thyroid monitoring with identification of the highest-risk individuals, the Expert Group 

proposes a thyroid dose of 100–500 mGy received in utero, during childhood, or 

during adolescence at the time of exposure to radiation for a practical definition of an 

actionable level to offer inclusion into the elective long-term thyroid monitoring 

programme for higher-risk individuals. 

The reason why the Expert Group recommends that such a programme be an 

elective activity is that the current data on whether thyroid screening brings more 

benefits than harms in terms of outcome, including morbidity, mortality, and quality of 

life in children and adolescents as well as in adult higher-risk populations, are limited 

(Lin et al., 2017b). Given the uncertainty, there should be a shared decision-making 

process between individuals, families, and clinicians about whether and how to 

engage in a thyroid monitoring programme (including performing the clinical 

examinations). The decision is whether one would prefer to have an earlier 

diagnosis, to potentially reduce the aggressiveness of the treatment (without 

reducing the risk of dying from thyroid cancer), but also the potential to be 

overdiagnosed and undergo treatment with the risks of complications and negative 

psychosocial impacts, or not to search for the disease, with the possibility of more 

extensive treatment later in life, but also the potential to never be diagnosed, and 

hence to undergo no treatment during one’s lifetime at all. The next chapters 

(Chapters 4.3.3 and 4.3.4) discuss the patient perspective on screening and 

approaches to avoid overdiagnosis in a thyroid monitoring programme. 
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Experience in the Republic of Korea 

Thyroid cancer screening in adults is commonly practiced in the Republic of 

Korea (Han et al., 2011), even though thyroid screening is not formally included in 

the government-initiated cancer screening programme. The data from the Republic 

of Korea serve as an example of what the impact might be of thyroid screening in the 

general adult population if it were implemented after a nuclear accident. 

Screening gained popularity with the spread of health check-ups among the 

Korean population in the early 2000s. In 1999, the National Cancer Screening 

Program initiated screening services for major cancers, including gastric, liver, 

colorectal, cervical, and breast cancers (Ahn et al., 2014). Thyroid ultrasonography 

was frequently conducted in addition to other cancer screenings, because it was 

inexpensive and easy to perform (Kim et al., 2009; Park et al., 2016). According to 

the Korea Community Health Survey, in 2012, 23% of the population reported that 

they had participated in thyroid cancer screening during the previous 2 years (Korea 

Centers for Disease Control and Prevention, Korea Community Health Survey, 

unpublished data, 2012). 

According to data from the Korea Central Cancer Registry, the age-adjusted 

incidence of thyroid cancer increased 15-fold between 1993 and 2011 (Ahn et al., 

2014; Jung et al., 2017; Fig. 5). Because this dramatic increase in thyroid cancer 

incidence coincided with the year of the introduction of the National Cancer 

Screening Program, it was thought to be the result of the increased practice of 

thyroid cancer screening. The regional-level analysis demonstrated that areas with 

high levels of thyroid cancer screening uptake were strongly associated with high 

incidence rates (Fig. 6). Furthermore, an analysis of data from the Korea Central 

Cancer Registry showed that the increase in thyroid cancer incidence was mostly 

due to the detection of a specific subtype, papillary carcinoma, which has been 

observed in autopsy studies of asymptomatic people (see Chapter 4.2.2). 
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Fig. 5. Thyroid cancer incidence and related mortality in the Republic of Korea, 1993–2011. 
Data on incidence are from the Korea Central Cancer Registry, and data on mortality are from 
Statistics Korea. All data are age-adjusted to the standard population in the Republic of Korea. 
Source: Ahn et al. (2014). Copyright © 2014, Massachusetts Medical Society. Reprinted with 
permission from Massachusetts Medical Society. 

 

 

 

 

 

 

 

Fig. 6. Association between thyroid cancer screening rates and thyroid cancer incidence rates 
in the 16 regions in the Republic of Korea, in females and males, in 2010. Data on screening 
are from the Korea Community Health Survey, Korea Centers for Disease Control and 
Prevention. Data on incidence are from the Korea Central Cancer Registry, Statistics Korea. 

Despite the rapid increase in incidence, the thyroid cancer-specific mortality rate 

remained stable or decreased marginally, from 0.65 per 100 000 in 2000 to 0.53 per 

100 000 in 2014 (Choi et al., 2017). The regional-level analysis showed no 

substantial difference in thyroid cancer mortality rates across regions with high and 

low thyroid cancer screening rates. In short, the experience in the Republic of Korea 

suggests that screening of otherwise asymptomatic people leads to the increased 

detection of a subclinical reservoir, resulting in an apparent epidemic without 
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proportionate mortality reduction, although the long-term impact of screening on 

mortality should be considered (Brito et al., 2013, 2015; Davies and Welch, 2014). 

In 2014, a group of physicians expressed their concerns about the overdiagnosis 

of thyroid cancer, which initiated a social debate in the country. This process led to 

the creation of the Korean National Cancer Screening Guidelines, which state that 

“thyroid screening by ultrasonography is not recommended for a healthy 

asymptomatic person” (Yi et al., 2015). Also, there was a marked decrease in thyroid 

cancer incidence and surgeries after the physicians expressed their concerns. The 

age-adjusted incidence of thyroid cancer decreased from 84.9 per 100 000 in 2013 

to 49.1 per 100 000 in 2015, according to the Korea Central Cancer Registry 

(Cancer Registration & Statistics Branch, 2017), and the number of thyroid surgeries 

declined from 40 124 in 2013 to 22 321 in 2015 (National Health Insurance 

Corporation, National Health Insurance Database, unpublished data, 2015). The 

analysis of insurance data suggests that the decrease in incidence and in the 

number of surgeries was the result of less screening rather than less aggressive 

management, such as active surveillance. Although the incidence of thyroid cancer 

remains high, the trend has been reversed as a result of lessons learned from the 

experience of overdiagnosis in the country. 

4.3.3 The patient perspective 

There is a strong belief in the benefits of screening among both health 

professionals and the public. This must be taken into account, because it will affect 

any efforts to educate the public about thyroid monitoring after a nuclear accident. 

Historic messaging has cultivated a cultural enthusiasm about the value of early 

detection. Some of the other important influences include financial incentives where 

insurance coverage is available, and marketing efforts by device and pharmaceutical 

companies (Moynihan et al., 2015; McCaffery et al., 2016). 

Many cultures value action in medical care over inaction (Feinstein, 1985), and in 

many populations health literacy and numeracy is limited. In addition to numeracy 

limitations, the public school curriculum usually does not include cancer 

epidemiology and the natural history of cancer, and therefore most people would not 

have baseline knowledge in this area. Lastly, the power of anecdotal evidence 

typically overrides the logic of risk information; it is much easier to focus on the one 

“saved” person than on all the others to whom nothing happened (Jenni and 

Loewenstein, 1997). 
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Although thyroid cancer screening is not recommended or endorsed for 

asymptomatic healthy adults, in some countries where it is practiced, studies show 

low awareness and understanding of the issues. Specifically, in a qualitative study in 

women aged 30–69 years in the Republic of Korea, most were unaware of the 

potential for overdiagnosis of thyroid cancer from thyroid ultrasound screening; 

nevertheless, even after they were informed about it, they continued to see 

screening as beneficial (Park et al., 2015). Similar results were found in a survey of 

women who were asked about their intention to undergo screening for thyroid 

cancer, with and without information on overdiagnosis being provided. Of the 

participants, 87% reported an initial intention to undergo thyroid cancer screening, 

and when they were provided with information about overdiagnosis, 74% of the 

same group of women still intended to undergo screening (Lee et al., 2016a). 

Although these study results seem to indicate that decision aids are not helpful 

because of such strong public beliefs, it is possible that as societal ideas shift, tools 

to support informed decision-making can become more effective. For example, in the 

case of prostate cancer, for which the potential for harm from screening is much 

better understood and information has been broadly disseminated to the public, the 

use of decision aids is more effective at appropriately lowering intent-to-screen rates 

when it is appropriate to do so and is congruent with the patient’s stated values 

(Evans et al., 2005). If the public understands the issues around thyroid cancer 

overdiagnosis and its natural history, then the options for thyroid health monitoring 

can be more easily and effectively explained to the population affected by a nuclear 

accident. 

4.3.4 Approaches to avoid overdiagnosis 

In certain situations, higher-risk individuals, such as those exposed in utero or 

during childhood or adolescence with a thyroid dose of 100–500 mGy or more, may be 

offered long-term thyroid monitoring (see Chapter 3, Recommendation 2). These 

individuals may elect to undergo a periodic thyroid ultrasound examination, a 

periodic physical examination by a trained clinician, or no examination. The main 

potential benefit of monitoring is that early detection may result in treatment options 

that are less intensive. The main potential harm is that treatment may not have been 

needed – the cancer detected may never have evolved to be clinically apparent had 

monitoring not taken place. The decision about which path to take is “preference-

sensitive”; that is, individuals would be expected to choose differently based on their 
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interpretation of the potential benefits, potential harms, and scientific uncertainties of 

each option. 

Based on current evidence and knowledge, the following approaches to minimize 

overdiagnosis of thyroid cancer should be considered. 

Education 

Health professionals and the public should be made aware of the potential harms 

and the potential benefits of thyroid screening. In 2017, the United States Preventive 

Services Task Force evaluated the data on ultrasound or palpation screening; they 

concluded that the potential harms continue to outweigh the potential benefits of 

detection through screening, and recommended against screening for thyroid cancer 

in healthy asymptomatic adult populations (Bibbins-Domingo et al., 2017). There is 

no parallel document for thyroid cancer screening in children, but there is a useful 

report that provides guidance on how to approach thyroid cancer screening in 

survivors of childhood, adolescent, and young adult cancer who received radiation 

doses to the thyroid (Clement et al., 2018). The recommendation is that shared 

decision-making be implemented between a health professional and the individual’s 

family to decide whether and how to monitor for thyroid cancer. Education of both 

health professionals and the public about the potential harms and the potential 

benefits of thyroid screening and the magnitude of its net benefit can facilitate such 

shared decision-making and allow individuals to make an informed decision 

consistent with the person’s values, preferences, and context. 

Programme development using principles of people-centred health services 

Without an organized programme to offer monitoring to higher-risk individuals, 

there is the possibility of overtreatment, undertreatment, and inequitable distribution 

of services. The World Health Organization (WHO) Framework on integrated people-

centred health services provides an outline for the development of a programme in 

which all people have equal access to high-quality health-care services and are 

empowered to have a more active role in their own health (WHO, 2015, 2016). 

WHO recommends five interwoven strategies to achieve this vision: (i) engage, 

educate, and empower people and communities; (ii) strengthen governance and 

accountability; (iii) reorient the model of care; (iv) coordinate services within and 

across sectors; and (iv) create an enabling environment. Health authorities are 

encouraged to select those policies and interventions that best fit their national, 
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subnational, or local needs and to customize them to match their priorities, 

capabilities, and resources. 

Use of shared decision-making processes 

Because the decision about whether to participate in thyroid monitoring is 

preference-sensitive, monitoring should be offered through an organized programme 

developed using the principles of shared decision-making (O’Connor et al., 2004). 

The programme should include the provision of balanced information about available 

options, including the potential benefits and harms of each, and consideration should 

be given to the values and preferences of the patient in regard to the options. In the 

case of thyroid monitoring after a nuclear accident, because the individuals being 

offered monitoring would be children or adolescents, parents or guardians will need 

to be involved in the decision-making process. 

Shared decision-making processes can be accomplished through the 

development and implementation of a specific “decision aid”. Examples include the 

model of the Ottawa Hospital Research Institute (Ottawa, Canada; 

https://decisionaid.ohri.ca) and that of conversational tools (Mayo Clinic, Rochester, 

MN, USA; https://shareddecisions.mayoclinic.org/) and option grids (The Dartmouth 

Institute for Health Policy and Clinical Practice, Hanover, NH, USA; 

https://health.ebsco.com/products/option-grid). 

Communication with the community and people participating in thyroid health 

monitoring 

After the Fukushima accident, four principles were developed for effective 

communication with the community at large (Murakami et al., 2017): (i) setting, 

(ii) scale, (iii) content, and (iv) communicator. In the communication setting, direct 

contact with participants was more effective and was better received than broad 

distribution of information. In the scale of communication, small, face-to-face group 

meetings were better than large meetings. For the content of the communication, it is 

important to establish appropriate communication materials with contents that are 

appropriate and easy for the audience to understand. For the communicator, outside 

experts were paired with locally recognized, trusted sources, such as teachers or 

public health nurses. Some of the approaches used in Fukushima are described in 

Chapter 4.6.5. 

It was noted that during the initial phase of the Thyroid Ultrasound Examination 

(TUE) programme, anxiety was increased by longer waiting periods for receipt of 

https://decisionaid.ohri.ca/
https://shareddecisions.mayoclinic.org/
https://health.ebsco.com/products/option-grid
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results, and the classification scheme of identified nodules also created anxiety. 

Care should be taken when communicating the findings of normal anatomical 

variations (such as colloid cysts) with the participants and their families, in order to 

avoid undue confusion or anxiety. 

4.4 Management of differentiated thyroid cancer 

4.4.1 Pre-surgical evaluation and treatment of differentiated thyroid cancer 

Clinical presentation 

Although primary thyroid tumours are often asymptomatic, individuals with a large 

or infiltrating tumour may experience a lump on the neck, trouble breathing or 

swallowing, hoarseness, or localized pain. Symptoms are more frequent with 

metastatic disease and depend on the site and the organ. Skeletal metastases are 

the most symptomatic, particularly when located in the spine. 

Pre-surgical evaluation 

All patients being considered for surgery for suspicion of thyroid cancer should 

undergo a neck ultrasonography both of the thyroid gland (to document number of 

nodules, location, and size) and of the cervical lymph nodes (to identify any 

suspicious cervical lymph nodes in the central or lateral compartments) (Francis et 

al., 2015; Haugen et al., 2016). After this, fine-needle aspiration cytology (FNAC) 

should be used to determine the malignant potential of the thyroid nodule and any 

suspicious cervical lymph nodes. Cross-sectional imaging is recommended for 

patients with bulky lymph node disease or where there is suspicion of invasion of 

major structures. 

Surgery 

Total thyroidectomy and lobectomy are the primary treatment options for patients 

with thyroid cancer confirmed by FNAC. In adults, lobectomy may be sufficient for 

unifocal, intrathyroidal papillary thyroid cancer (PTC) up to 4 cm in diameter, or 

thyroid cancer with non-invasive histology, such as the encapsulated follicular variant 

of PTC or minimally invasive follicular thyroid cancer (FTC) (Haugen et al., 2016). A 

completion thyroidectomy should be performed if histology after lobectomy shows 

invasive behaviour or high-risk differentiated thyroid cancer (DTC) variants. Total 

thyroidectomy is indicated in the other cases. In adults, central lymph node 

dissection should be considered in patients who have advanced primary tumours 

(classification T3 or T4 [tumour > 4 cm or with gross extrathyroidal extension (ETE)] 
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in the American Joint Committee on Cancer [AJCC] tumour–node–metastasis [TNM] 

cancer staging system) or clinically involved lateral neck lymph nodes (cN1b) 

(Haugen et al., 2016; Tuttle et al., 2017). 

For adult patients with unifocal, intrathyroidal papillary thyroid microcarcinomas 

(PTMC), studies are in progress to determine whether “active surveillance” 

(observation by serial ultrasound examinations) can be pursued as an elective 

alternative to immediate surgery. A recent study of adult patients with low-risk PTMC 

who have chosen this option has shown that the lifetime probability of disease 

progression decreases with increasing age, from up to 60% if active surveillance is 

initiated during the third decade of life to 4% if surveillance is initiated during the 

eighth decade of life (Miyauchi et al., 2018). 

Current guidelines for paediatric patients recommend total thyroidectomy for 

patients with cytology suspicious for PTC, described by the Bethesda System for 

Reporting Thyroid Cytopathology categories V (suspicious for) or VI (consistent with) 

PTC (Francis et al., 2015; Cibas and Ali, 2017). Diagnostic lobectomy may be 

considered in paediatric patients with indeterminate cytology and may be sufficient if 

the pathology reveals an encapsulated follicular variant of PTC without 

lymphovascular invasion or a minimally invasive FTC (Francis et al., 2015; Samuels 

et al., 2018). Prophylactic central neck dissection should be considered for paediatric 

patients with PTC and should be performed in all paediatric patients with evidence of 

lateral neck lymph node metastasis, confirmed by FNAC, or distant (pulmonary) 

metastasis (Francis et al., 2015). There are no data to support consideration of 

active surveillance of PTMC in children or adolescents. 

Radioiodine ablation/therapy 

In the past, almost every patient with a diagnosis of DTC underwent adjuvant 

radioactive iodine (RAI) ablation after surgery. Currently, careful review of a patient’s 

outcome has introduced the concept of risk-based selection of patients for RAI 

therapy (Castagna et al., 2016). RAI ablation is only indicated in high-risk patients. In 

intermediate-risk patients, radioiodine remnant ablation may be indicated, but the 

decision must be individualized using the postoperative tumour marker thyroglobulin 

(Tg) together with neck ultrasonography and/or postoperative diagnostic whole-body 

scanning. RAI adjuvant therapy is recommended after total thyroidectomy in high-

risk patients, defined as patients with gross ETE (AJCC T4) and/or distant 

metastasis (AJCC M1) (Haugen et al., 2016). Within the paediatric population, RAI 
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therapy should be considered for all patients with American Thyroid Association 

paediatric-designated intermediate- and high-risk disease, with the administered RAI 

activity determined by the postoperative Tg level, radioiodine diagnostic whole-body 

scanning, and the results of other imaging modalities (Francis et al., 2015). 

Treatment of distant metastatic disease 

Distant metastases are observed in approximately 3% of PTC cases (Lim et al., 

2017), with a higher proportion observed in paediatric patients than in adult patients 

(Al-Qurayshi et al., 2016). Patients with lateral neck lymph node metastasis have an 

increased risk of distant metastasis (Lee et al., 2011; Francis et al., 2015). Distant 

metastases most commonly occur in the lungs (50% of metastases), followed by the 

bones (26%), both lungs and bones (18%), and other sites (5%) (Dionigi et al., 

2014). For FTC, the risk of distant metastasis correlates with the degree of tumour 

vascular invasion. Treatment of distant metastases includes adjuvant RAI, as well as 

potential application of local treatment modalities (e.g. surgery, radiation therapy, 

and thermal radiofrequency or cryo-ablation) for refractory metastasis. Despite all of 

these methods, a complete response is observed in less than half of patients with 

distant metastases (Durante et al., 2006; Pawelczak et al., 2010). 

Levothyroxine therapy after surgery 

Immediately after total thyroidectomy, thyroid hormone therapy is initiated. If less 

than a total thyroidectomy is performed, the function of the remaining thyroid gland 

must be assessed through evaluation of thyroid-stimulating hormones (TSH). 

Levothyroxine (L-T4), used to replace the thyroid gland, is given in TSH-suppressive 

dosage to high-risk thyroid cancer patients and may decrease progression of 

metastatic disease and improve survival (Diessl et al., 2012). No significant benefits 

for TSH suppression have been demonstrated in low-risk patients, and in these 

patients, serum TSH may be maintained at the lower end of the reference range 

(TSH of 0.5–2 milliunits per litre [mU/L]). For patients who achieve stable remission 

from disease, regardless of the initial risk classification, LT-4 therapy may be shifted 

from a suppressive to a replacement dosage (Haugen et al., 2016). 

4.4.2 Follow-up and prognosis of differentiated thyroid cancer 

The aim of follow-up is to discover and treat persistent or recurrent locoregional 

or distant disease. Patients with no clinical, biochemical, or structural evidence of 

disease are classified as having an “excellent response” to initial therapy (Francis et 
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al., 2015; Haugen et al., 2016; Sohn et al., 2017; Sung et al., 2017). This is 

associated with a very low risk of recurrence in long-term follow-up (1–4%) (Tuttle et 

al., 2010; Castagna et al., 2011; Momesso and Tuttle, 2014; Momesso et al., 2016; 

Pires et al., 2016). Patients who have persistently detectable or rising Tg values 

under TSH stimulation (or even TSH suppression), or persistent or rising anti-Tg 

antibodies without structural evidence of disease, are classified as having a 

“biochemical incomplete response” (Haugen et al., 2016). Within this category, 56–

68% of patients will continue to show no evidence of disease, although 8–17% will 

ultimately be found to have structural disease over 5–10 years of follow-up. Patients 

with biochemical incomplete response should be followed up every 6–12 months, 

maintaining mild TSH suppression (0.1–0.4 mU/L) with appropriate cross-sectional 

imaging based on the serum Tg levels over time (Haugen et al., 2016; Lazar et al., 

2016). Adult patients with a postoperative TSH-stimulated Tg level of greater than 

10–30 nanograms per millilitre (ng/mL) have an unfavourable prognosis, with 

decreased disease-free survival and increased disease-specific mortality. Post-

lobectomy patients should be followed up with serial physical examinations, serum 

Tg measurements, and thyroid and neck ultrasonography to assess for persistent or 

recurrent disease. 

In paediatric patients, the presence of ETE more than five lymph node 

metastases and distant metastasis (pulmonary) predicts an increased risk of 

persistent and recurrent disease (Francis et al., 2015; Sung et al., 2017). After initial 

treatment, a single Tg level that is higher than 10 ng/mL is consistent with an 

incomplete response; however, there is no defined Tg level that is associated with 

unfavourable prognosis. Because the majority of paediatric patients have low 

disease-specific mortality, even for patients with pulmonary metastasis, the trend in 

postoperative Tg, in concert with radiological imaging, should be used to determine if 

and when additional therapy may be beneficial (Biko et al., 2011; Padovani et al., 

2012). Biochemical and radiological surveillance are typically performed every 3–

6 months and every 6–12 months, respectively (Francis et al., 2015). 

Persistent disease 

A patient with a “structural incomplete response” is defined as having persistent 

or newly identified locoregional or distant metastases. The management of these 

patients must be individualized based on the location of disease and the response to 

previous therapy. Despite additional treatments, the majority of patients classified as 
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having a structural incomplete response will continue to have persistent structural 

and/or biochemical evidence of persistent disease at final follow-up (Pawelczak et 

al., 2010; Vaisman et al., 2011b). 

Although the response to therapy assessment described above has been 

validated for DTC patients treated with total thyroidectomy and RAI, fewer data are 

available for patients treated with lobectomy or total thyroidectomy without RAI. 

Recurrent disease 

Long-term studies have shown that recurrent disease occurs in about 9% (at 

10 years) of adult patients and about 30% (at 40 years) of paediatric patients, mostly 

in those with extensive disease at initial presentation (e.g. large thyroid tumour, ETE, 

and lymph node metastases) (Landau et al., 2000; Bilimoria et al., 2007; Hay et al., 

2010). Among patients with recurrence, three quarters will have disease in the neck 

only, mostly in lymph nodes or in the thyroid bed. Recurrent disease is also more 

commonly seen in those with an aggressive histological type, including tall cell, 

columnar cell, and hobnail variants in adults (Haugen et al., 2016) and diffuse 

sclerosing variant in paediatric patients (Koo et al., 2009). 

Side-effects and complications of treatment 

The main side-effects and complications of surgery for thyroid cancer are 

damage to laryngeal nerve function, through loss of either the superior laryngeal 

nerve (temporary or permanent, 0–58%) or the recurrent laryngeal nerve (~10%), 

and loss of parathyroid gland function (temporary, ~17%; permanent, ~2%) 

(Friedman et al., 2002; Francis et al., 2014; Oda et al., 2016; see Annex 3). Rates of 

damage to the recurrent laryngeal nerve and parathyroid gland function have been 

shown to be lower in surgeries performed by surgeons who perform 26 or more 

thyroid surgeries annually (Adam et al., 2017). 

The side-effects of RAI (131I) therapy are believed to be dose-dependent. The 

most worrisome side-effect is the risk of a secondary malignancy. There is no direct 

evidence of increased risk of secondary malignancies after a single course of 

adjuvant therapy compared with the observed risk of a second primary cancer in 

thyroid cancer patients who have not been treated with 131I (Haugen et al., 2016). 

The risk of soft tissue and bone tumours increases by about 20%, and the risk of 

leukaemia increases by about 2.5-fold, relative to thyroid cancer survivors not 

treated with RAI (Haugen et al., 2016). The most common side-effect of RAI is 

xerostomia, with an increased risk of dental caries, because of the loss of salivary 
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gland function (Fard-Esfahani et al., 2014). Additional known side-effects are dry 

eyes and nasolacrimal system dysfunction, dysphagia, and, at very high cumulative 

activities of 131I, decreased fertility. 

After thyroid surgery for thyroid cancer, there is a lifelong need for thyroid 

hormone replacement as described above (100% after total thyroidectomy, 25% 

after lobectomy) (Saravanan et al., 2002; Said et al., 2013). Obtaining prescription 

medication requires regular blood tests and doctor visits. It has been shown that 

those receiving thyroid hormone replacement therapy are more likely to experience 

impaired psychological well-being than those who are not using thyroid hormone 

replacement therapy (Saravanan et al., 2002). 

Disease-specific mortality 

Overall, thyroid cancer survival is excellent. For example, in adult patients 

younger than 55 years, the expected 10-year disease-specific survival is 98–100% 

for localized or regional disease and 85–95% for distant metastases (Perrier et al., 

2018). PTC, the type that is of concern after exposure to radiation, has a particularly 

high survival rate; 97–99% of patients with PTC limited to the thyroid gland are alive 

20 years after diagnosis (Davies and Welch, 2014). In adults, factors that have been 

shown to affect PTC mortality include older age, tumour size, ETE, incomplete 

resection, cervical lymph node or distant metastasis, and being diagnosed with stage 

3 (or higher) cancer, with cause-specific mortality approaching 30% for patients with 

MACIS scores (distant metastasis, patient age, completeness of resection, local 

invasion, and tumour size) of 6 or more (Grogan et al., 2013; Hay et al., 2018). 

In paediatrics, PTC-specific 30-year survival is approximately 99–100% 

irrespective of sex, procedure type, or presence of regional lymph node metastasis 

at presentation, with a minimal decrease in survival (to 97%) for patients with distant 

metastasis (Golpanian et al., 2016). Disease-specific survival in radiation-induced 

PTC is similar to that in non-radiation-induced PTC. For children and adolescents 

exposed to Chernobyl fallout, survival was 98–99% (Hay et al., 2010; Tuttle et al., 

2011; Reiners et al., 2013). 

Based on the evidence described above (see also Chapter 4.1), the clinical 

management of thyroid cancer occurring as a result of radiation exposure after a 

nuclear accident should be conducted in the same manner as it is for children who 

have spontaneous thyroid cancer. Treatment should be concordant with the 

published guidelines. 
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4.5 Radiation and cancer 

4.5.1 Radiation exposure 

Radiation is defined as movement of energy through space. On the basis of the 

frequency or wavelength of emitted energy, radiation can be divided into ionizing and 

non-ionizing radiation. Radiation that carries enough energy to ionize atoms as it 

passes through matter is called ionizing radiation. It comes from both natural and 

artificial sources. The two major sources of natural ionizing radiation are 

radionuclides originating from the Earth’s crust, including radon, and cosmic rays 

from space. The major contributor to anthropogenic sources of radiation is medical 

uses of radiation (X-rays and nuclear medicine). Other artificial sources of exposure 

include occupational exposure, fallout from nuclear weapons testing, and, in some 

instances, fallout from nuclear reactor accidents. 

Ionizing radiation can consist of either waves (electromagnetic radiation such as 

X- and γ-rays) or particles (such as α or β particles). X- or γ-rays can penetrate a 

body, but not all of the waves will necessarily interact with the tissue in the body as 

they pass through. Particulate forms of ionizing radiation, except neutrons, penetrate 

less because they have a mass and they slow down by collisions; they deliver a 

dose of radiation to the body’s cells mainly if ingested or inhaled. 

Radioactivity refers to unstable atoms that disintegrate spontaneously. The unit of 

radioactivity in the International System of Units (SI) is the becquerel (Bq), which is 

equal to 1 disintegration per second (decay/s). Half-life is the length of time that it 

takes for half of the atoms of a given nuclide to decay, and may range from millionths 

of a second to millions of years. 

To estimate radiation dose (i.e. the energy absorbed by tissue), one needs to 

understand the processes by which radiation interacts with tissue. Absorbed dose is 

defined as the amount of energy absorbed by tissue (or an organ) and is generally 

viewed as the most useful measure of radiation dose for epidemiological studies. 

The SI unit for absorbed dose is the gray (Gy), defined as 1 joule per kilogram (J/kg). 

The health risks from exposure to radiation depend on various factors, including 

radiation type, dose, and dose rate, and the characteristics of the exposed persons 

such as age at exposure and sex. The unit used in radiation protection is the sievert 

(Sv) and is an absorbed dose weighted for potential to cause harmful effects of 

different radiations and for susceptibility to radiation-induced harm for different 
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exposed tissues. The range of radiation dose from various sources is illustrated in 

Fig. 7. 

 

 

 

 

 

 

 

 

 

Fig. 7. The range of doses of ionizing radiation from various sources. mSv, millisieverts. 
Source: UNSCEAR (2016). Reproduced by permission of UNSCEAR. 

Dosimetry, the quantification of radiation exposure, can be subdivided into 

internal and external dosimetry. Internal dosimetry assesses radiation from sources 

within the body, such as radionuclides, whereas external dosimetry measures 

sources of radiation outside the body. 

The exposure to ionizing radiation from nuclear accidents has been 

predominantly particulate (α and β particles), but some radioactive elements also 

release γ-radiation. People can be exposed to ionizing radiation from nuclear 

accidents via several pathways: internal exposure from inhalation and ingestion 

intake of radionuclides, and external exposure from radionuclides in the radioactive 

cloud and radionuclides deposited on the ground and other surfaces. 

4.5.2 Protective actions to minimize radiation exposure 

In 2015, the International Atomic Energy Agency (IAEA) set international 

guidelines in the publication Preparedness and response for a nuclear or radiological 

emergency: general safety requirements (IAEA, 2015a). These guidelines on 

preparedness and response were established to ensure that procedures are in place 

to assess emergency conditions and take urgent protective actions (PAs) and other 

response actions after a nuclear accident. 

Such emergency situations have three phases: early, intermediate, and long-term 

(FEMA, 2016). The early phase is characterized as the period during which 



 
62 

radionuclides are released into the environment. The intermediate phase of the 

accident response is characterized as the period during which radiological 

assessments are carried out. The intermediate phase starts when the source of the 

release has been contained and further significant accidental releases are unlikely. 

The long-term phase begins when the source is sufficiently secured to ensure that 

there will be no further releases, and the radiological conditions of affected areas are 

adequately characterized to support decisions about future inhabitation and land 

use. A plan must be in place to disseminate information and communicate with the 

public throughout a nuclear emergency. 

In the event of an uncontrolled release of radioactive materials into the 

environment from a nuclear accident, the PAs taken to reduce radiation risks are a 

combination of one or more interventions intended to minimize internal or external 

radiation exposure (IAEA, 2015a). Urgent PAs include sheltering in place, 

evacuation, iodine thyroid blocking (ITB), and providing access to non-contaminated 

water, milk, and food. For PAs to be effective, they must be part of a radiological 

emergency plan to anticipate, respond to, and recover from a nuclear or radiological 

emergency. Emergency plans should include active and passive surveillance, as well 

as an effective education and warning system accessible to the nuclear power plant 

operators, local authorities, emergency responders, and the population. 

In 2017, the World Health Organization (WHO) published new guidelines, Iodine 

thyroid blocking: guidelines for use in planning for and responding to radiological and 

nuclear emergencies (WHO, 2017a). These guidelines define the target population, 

the recommended timing and dosage of stable iodine, as well as the potential 

benefits of ITB to minimize thyroid dose from internal exposure to radioiodine. 

According to the WHO guidelines, ITB should be implemented as an urgent PA 

within the framework of a justified and optimized nuclear emergency protection 

strategy. In addition, other PAs, such as sheltering in place, evacuation, and 

providing access to non-contaminated water, milk, and food, must be considered. 

The most vulnerable groups likely to benefit from ITB are children, adolescents, 

pregnant women, and breastfeeding women. Individuals aged 40 years or older are 

less likely to benefit from ITB, because of the very low risk of thyroid cancer induced 

by radiation in this age group (see Chapter 4.5.4). 

The optimal period of administration of stable iodine is less than 24 hours before, 

and up to 2 hours after, the expected onset of exposure. It would still be reasonable 

to administer ITB up to 8 hours after the estimated onset of exposure. However, 
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starting with ITB later than 24 hours after exposure may yield more harm than 

benefit, because it would prolong the half-life of radioactive iodine accumulated in 

the thyroid. A single administration of an ITB agent is usually sufficient. However, 

repeated administration of stable iodine may be necessary in the case of prolonged 

(beyond 24 hours) or repeated exposure (Zanzonico and Becker, 2000; Verger et al., 

2001), where ingestion of contaminated food and drinking-water is unavoidable, and 

where evacuation is not feasible. Neonates, pregnant women, breastfeeding women, 

and people aged 60 years or older should not receive repeated ITB, because of the 

risk of adverse effects. 

The nuclear accidents in Chernobyl and Fukushima highlighted the importance of 

timely PAs. In Chernobyl, very high activities of iodine-131 (131I) were released over 

10 days. The lack of immediate sheltering in place and implementation of ITB, 

incomplete evacuation, and continued ingestion of contaminated dietary items (milk 

and others) resulted in high thyroid doses (estimated mean dose > 650 milligray 

[mGy]) and a consequent significant rise in the incidence of thyroid cancer in children 

and adolescents living in highly contaminated areas of Belarus, the Russian 

Federation, and Ukraine (UNSCEAR, 2011, 2018). In contrast, an increase in the 

incidence of thyroid cancer was not observed in Poland, because of the effective 

removal of contaminated milk and the organization of ITB (Nauman and Wolff, 1993). 

In Fukushima, the amount of 131I released during four explosions of short duration 

was about one tenth of the Chernobyl release (UNSCEAR, 2014). As a result of the 

impact of the earthquake and the tsunami, the communication infrastructure was 

disrupted, thus limiting the available information. Therefore, decisions on PAs were 

made under conditions of uncertainty and stress (National Research Council, 2014). 

However, pre-emptive evacuation orders and the regulatory limits for contaminated 

food, milk, and water resulted in significantly lower radiation doses to the resident 

population (see Chapters 4.5.3 and 4.6.2). A systematic ITB programme was not 

implemented, because thyroid exposure of the population fell below the 

recommended intervention level of 50 mGy (UNSCEAR, 2014; IAEA, 2015a; see 

Chapter 4.6.2). 

The education of the public, local authorities, and health professionals about PAs 

is essential before a nuclear power plant reactor starts operation. Once it is 

operational, education must continue and be accompanied by regular exercises and 

drills targeted at identifying critical strengths and weaknesses in response 

preparedness as part of an effective emergency plan. 
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4.5.3 Thyroid dose assessment 

In general, in the case of a nuclear accident with environmental release of 

radioactive material, including radioactive iodine, the following exposure pathways 

contribute to the thyroid dose received by members of the public: (i) internal 

exposure from inhalation and ingestion intake of iodine-131 (131I); (ii) internal 

exposure from inhalation and ingestion intake of short-lived radioiodines (132I, 133I, 

and 135I) and of short-lived radiotelluriums (131mTe and 132Te); (iii) external exposure 

from radionuclides in the radioactive cloud and radionuclides deposited on the 

ground and other surfaces; and (iv) internal exposure from incorporated long-lived 

radionuclides such as radiocaesiums (134Cs and 137Cs) as a result of inhalation and 

ingestion intake (Gavrilin et al., 2004). The relative importance of the contribution to 

the thyroid dose of these exposure pathways depends on residence history, dietary 

habits, and actions taken to reduce the dose for an individual considered. However, 

for most of the members of the public, intake of 131I is the primary source of dose to 

the thyroid. For the residents who lived in contaminated areas and consumed 

contaminated foodstuffs locally produced during the first few weeks after the 

accident (e.g. in the case of the Chernobyl accident, for the residents who drank milk 

from cows that had been grazing in pastures), the fraction of the thyroid dose due to 

exposure from short-lived isotopes of iodine and tellurium, external exposure, or 

radiocaesium ingestion intake is about 1% for each pathway (Gavrilin et al., 2004; 

Minenko et al., 2006). For those residents who lived in contaminated areas and did 

not consume locally produced contaminated foodstuffs, the contribution of the 

external exposure to the thyroid dose might be compared to that from 131I. The 

contribution of short-lived isotopes of iodine and tellurium is estimated to be within 

several tens of percent of the dose to the thyroid from 131I, whereas the contribution 

of radiocaesium remains insignificant (< 1%) (UNSCEAR, 2014; IAEA, 2015b). It is 

important to stress that for the residents who did not consume contaminated 

foodstuffs, the main exposure pathway for 131I is inhalation intake, which results in a 

much lower dose to the thyroid from 131I (by a factor of 10–100) than if ingestion 

intake of 131I had been the dominant pathway (Gavrilin et al., 2004). 

Doses to the thyroid from the three minor contributors mentioned above are 

usually assessed on the basis of computational models that include data such as 

deposition densities of various radionuclides, taking into account information on the 

whereabouts and dietary habits of the individuals after the accident, which can be 

obtained through personal interviews and/or mailed questionnaires (Gavrilin et al., 
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2004; Minenko et al., 2006). In addition, internal exposure from incorporated 134Cs 

and 137Cs can be assessed by using measurements of these radioactive isotopes of 

caesium by whole-body counters coupled with the time-dependent intake rate of 

radiocaesiums. 

Doses to the thyroid from internal exposure to 131I can be assessed by using a 

radioecological model simulating the transfer of 131I through environmental 

processes from ground deposition to intake by humans. A typical radioecological 

model to estimate an individual thyroid dose consists of many parameters, including: 

(i) ground deposition density of 137Cs; (ii) ratio of 131I to 137Cs in the activities 

deposited on the ground; (iii) stage of vegetation development; (iv) initial interception 

of 131I by vegetation; (v) elimination rate of 131I from grass and milk; (vi) individual 

consumption rates of milk, milk products, and leafy vegetables; (vii) individual mass 

of the thyroid; (viii) individual level of iodine uptake by the thyroid; (ix) individual rate 

of elimination of iodine from the thyroid, and so on (Müller and Pröhl, 1993; Kruk et 

al., 2004). In addition, the influence of applied countermeasures (such as 

evacuation, introduction of maximum permissible level of 131I concentration in milk, 

and intake of potassium iodide [KI] pills to preclude the uptake of radioactive iodine 

by the thyroid) should be taken into account. The total uncertainty of an individual 

thyroid dose derived from such a radioecological model is very high. 

The total uncertainty in the thyroid dose can be substantially reduced if within a 

few weeks after the accident a thyroid measurement to determine the thyroidal 131I 

content is conducted for an individual. To calculate the thyroid dose from internal 

exposure to 131I, which is proportional to the time-integrated activity of 131I in the 

thyroid, the variation with time of the 131I activity also has to be assessed. Models of 

environmental transfer and metabolism of 131I are used to determine: (i) the relative 

rate of intake of 131I, both before and after the measurement, taking into account the 

information on residence history and dietary habits obtained during the personal 

interview; and (ii) the variation with time of the 131I activity in the thyroid, taking into 

account the metabolism of 131I in the body and its possible modification by the intake 

of stable iodine to block the thyroid (Bouville et al., 2007). The greater the number of 

direct thyroid measurements that are carried out for an individual at various times 

after the accident, the smaller the total uncertainty of the thyroid dose is. However, 

the time span of such direct thyroid measurements is within a few weeks after the 

accident, because of the short radioactive half-life of 131I (8.04 days). 



 
66 

The direct thyroid measurement is conducted by placing a γ-radiation detector 

against the neck to measure the exposure rate of γ-rays arising from the radioactive 

decay of 131I in the thyroid. However, if a simple non-energy-selective device is used, 

then the resulting measurement usually includes γ-rays due to: (i) incorporated 

radioactive isotopes of caesium; (ii) radionuclides deposited on the hair, skin, and 

clothes of the individual being measured; (iii) radionuclides deposited on the ground 

and in the room where the measurement is conducted; and (iv) naturally occurring 

radiation (Gavrilin et al., 1999). 

With respect to assessment of the fetal thyroid dose, it is important to stress that 

human fetal thyroid tissue starts accumulating 131I by the 12th week of gestation. 

According to the International Commission on Radiological Protection model (ICRP, 

2001), in the case of a single intake of 131I by the mother, there is a constant 

increase of dose coefficient versus fetal age from the 12th week to the end of the in 

utero period. The maximal fetal thyroid dose is about 2.5 times the thyroid dose to 

the mother. 

4.5.4 Radiation-related cancer risks 

Biological mechanisms 

By definition, ionizing radiation has sufficient energy to remove otherwise tightly 

bound electrons from atoms. Ionizing radiation presents in the form of 

electromagnetic rays, namely X- or γ-rays, or as subatomic particles, such as 

protons, neutrons, and α and β particles (Kesminiene and Schüz, 2014). In biological 

organisms, ionizing radiation can cause cell death at high doses of exposure or 

mutations in the cell nuclei through DNA damage, which has been considered the 

primary mechanism of cell malignant transformation. Other biological phenomena, 

such as epigenetic effects, genomic instability, or the bystander effect, are also likely 

to be involved (Kesminiene and Schüz, 2014). 

Measure of radiation-related cancer risks 

To provide a quantitative measure of association between radiation dose and 

cancer occurrence, an excess relative risk (ERR) per unit of dose is typically used in 

addition to relative risk (RR), which compares the rate of cancer occurrence in an 

exposed group with that in a non-exposed group. ERR expresses the magnitude of 

increase in cancer rates in an exposed group compared with the respective 

background rates in a “non-exposed” group. Because of cosmic and terrestrial 

natural sources of ionizing radiation, human exposure to environmental ionizing 
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radiation is inevitable. In radiation studies, the term “non-exposed” therefore usually 

refers to the background exposure from natural sources (UNSCEAR, 2000b). For the 

interpretation of ERR estimates, an ERR of 0 means no excess in cancer occurrence 

above the background (spontaneous) rate, whereas an ERR of 1 indicates doubling 

of the cancer rate compared with the background rate. Another radiation effect 

measure is an excess absolute risk (EAR), which indicates the number of excess 

cancer cases in exposed persons above the background rate of cancer occurrence. 

An EAR of 0 means no excess, and any positive value represents some level of 

increased risk. ERR and EAR can be expressed per unit of exposure dose. 

Scientific evidence on radiation-related cancer risks 

The first radiation-induced cancers had already been described in the literature 

more than a century ago. The carcinogenic effects of ionizing radiation were 

recognized more broadly based on the follow-up results of survivors of the atomic 

bombardments of Hiroshima and Nagasaki, Japan, in 1945, who were exposed 

primarily to instantaneous (acute) γ-radiation. A few years after the atomic bombings, 

leukaemia was the first radiation-induced malignancy observed in the survivors, with 

excess leukaemia cases reaching a peak 6–8 years after exposure and higher 

relative risk in those exposed at younger ages than in those exposed at older ages 

(Ozasa, 2016). About 10 years after the bombing, an excess of various solid cancer 

sites became noticeable, including cancers of the oral cavity, oesophagus, stomach, 

colon, lung, breast, bladder, nervous system, skin (non-melanoma types), and 

thyroid (Preston et al., 2007). Increased cancer risks have also been reported after 

medical and occupational exposures to ionizing radiation (IARC, 2012). Recently, 

long-term follow-up of cancer mortality in a combined cohort of more than 300 000 

radiation-monitored nuclear workers in France, the United Kingdom, and the USA 

strengthened the evidence of a no-threshold linear association with protracted low-

dose radiation exposure both for leukaemia and for all solid cancers combined 

(Leuraud et al., 2015; Richardson et al., 2015, 2018). However, there remain 

uncertainties of the site-specific associations between low-dose radiation and cancer 

mortality, particularly for a type with low mortality, such as thyroid cancer. 

For most of the radiation-induced solid cancers, the estimated minimum latency 

period, defined as the minimum period after exposure after which an excess risk is 

detectable, is 5–10 years (UNSCEAR, 2006). This could vary, however, depending 

on the magnitude of the doses received, the background cancer rate in the 
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population, and other factors (e.g. in the case of thyroid cancer, iodine deficiency in 

the population). As for thyroid cancer, an increase in thyroid cancer incidence was 

first reported in the fourth to fifth year after the Chernobyl accident. Based on the 

data from the Chernobyl accident, the estimated minimum latency period is 3–

5 years (Heidenreich et al., 1999, 2004; WHO, 2013; UNSCEAR, 2018); an excess 

risk of radiation-induced thyroid cancer was observed among residents of the most 

heavily contaminated areas of Ukraine after a minimum latency period of about 

3 years (i.e. no excess during about 3 years) after exposure (Heidenreich et al., 

2004). 

In summary, all types of ionizing radiation are associated with an increased risk of 

cancer at various anatomical sites, and there is a growing body of evidence that 

shows increased cancer risk at low doses of radiation exposure. This means that a 

nuclear accident can theoretically result in a substantial cancer burden in the vicinity 

of the accident, and therefore raise anxiety and fear in the population about 

radiation-related cancer risk. In reality, however, the number of radiation-related 

excess cancers is determined exclusively by the magnitude of accumulated 

individual radiation doses among affected persons. The risk of radiation-related 

cancer depends not only on the amounts of radionuclides and radiation types 

released after the accident, but also on the individual intake of radioactive 

substances with air, water, and food, and on implemented post-accident 

countermeasures mitigating the radiation exposure. Follow-up of the general 

population in the Southern Urals, Russian Federation, exposed to radiation as a 

result of several years of nuclear waste dumping into the Techa River, the main 

water supply to the population of riverside villages, showed that exposure to 

environmental sources of radioactivity (contaminated river water, river bottom 

sediments, and ground contamination) could result in sufficiently high doses in 

individuals to lead to an increase in the risk of both leukaemia and solid cancers 

(Preston et al., 2017). After the Chernobyl accident, with its massive release of 

radionuclides, clean-up workers (liquidators) showed increased risks of leukaemia 

and thyroid cancer (Kesminiene et al., 2012; Hatch and Cardis, 2017). In the affected 

general population, however, the only well-established post-Chernobyl cancer 

consequence was a substantial increase in the incidence of thyroid cancer after 

exposure in childhood and adolescence. There are also some preliminary 

suggestions of increased risks of breast cancer and leukaemia, but they remain 

unconfirmed (Hatch and Cardis, 2017). For Fukushima, data suggest that exposure 
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to the individuals is an order of magnitude lower than that from the Chernobyl 

radioactive fallout; therefore, the risk of cancer is considered low (see 

Chapter 4.6.2). 

Inhalation or ingestion of radioiodines (iodine-131 [131I] and short-lived radioiodine 

isotopes) released during nuclear accidents results in radiation exposure primarily of 

the thyroid gland. As a consequence of the Chernobyl nuclear accident, as 

mentioned above, there was a dramatic increase in thyroid cancers among children 

in substantially contaminated areas of Belarus, Ukraine, and parts of the Russian 

Federation (UNSCEAR, 2011), with the risk of thyroid cancer occurrence increasing 

1.4–4.7-fold after 1 Gy of thyroid gland exposure (Table 2) (Cardis et al., 2005; 

Brenner et al., 2011; Zablotska et al., 2011; Ivanov et al., 2016; Tronko et al., 

2017a). People who took stable iodine for thyroid blocking immediately after the 

accident had a lower risk of thyroid cancer after exposure to radioiodine compared 

with those who did not; moreover, residents of the areas where iodine deficiency is 

common may have had higher risks of thyroid cancer (Nauman and Wolff, 1993; 

Cardis et al., 2005; Brenner et al., 2011). In countries outside the former Soviet 

Union, thyroid doses from the fallout were at least 2 orders of magnitude lower than 

those in exposed populations of Belarus, the Russian Federation, and Ukraine, with 

studies carried out there providing no unequivocal evidence on increased risk of 

thyroid cancer (UNSCEAR, 2011). In relation to the Three Mile Island accident, 

thyroid cancer incidence was higher than expected in the 30 years after the accident 

in the affected nearby counties, but the correlation with the accident remains 

uncertain because incidence rates may coincide with other factors (Levin et al., 

2013). Studies of thyroid cancer, as well as other health consequences, in relation to 

the Fukushima accident and in comparison with the other accidents are under way 

(Hasegawa et al., 2015). 
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Table 2. Summary of several key studies on risk of thyroid cancer after radiation exposure in childhood 

Exposure (study) Mean age at 
exposure 

(years) 

Mean 
thyroid 

dose (Gy) 

Number of 
thyroid cancers 

ERR per 1 Gy 
(95% CI) 

External exposure 

Tinea capitis (Sadetzki et al., 
2006) 

7 0.093 159 20.2 (11.8–32.3) 

Enlarged thymus (Adams et al., 
2010) 

0.2 1.29 63 3.2 (1.5–6.6) 

Childhood external radiation, 12-
study pooled analysis (Veiga et al., 
2016) 

5 0.71 1070 5.5 (1.7–7.2) 

Atomic bomb survivors (Furukawa 
et al., 2013) 

< 20 0.142 191 1.3 (0.6–2.7)a 

131I exposure 

Chernobyl, Russian Federation 
(Ivanov et al., 2016) 

< 18 0.174 316 4.7 (2.5–7.7) 

Chernobyl, Belarus, Russian 
Federation (Cardis et al., 2005) 

7.4 0.433 276 4.5 (1.2–7.8)b 

Chernobyl, Belarus (Zablotska et 
al., 2011) 

8.2 0.56 87 2.2 (0.8–5.5)c 

Chernobyl, Ukraine, 1st screening 
cycle (Tronko et al., 2006) 

8.0 0.68 45 5.2 (1.7–27.5) 

Chernobyl, Ukraine, 2nd–4th 
screening cycles (Brenner et al., 
2011) 

8.0 0.65 65 1.9 (0.4–6.3) 

Chernobyl, Ukraine, 5th screening 
cycle (Tronko et al., 2017a) 

8.0 0.62 47 1.4 (0.4–4.2) 

CI, confidence interval; ERR, excess relative risk; Gy, gray; 131I, iodine-131. 
a ERR per Gy of thyroid dose at age 60 years after acute exposure at age less than 10 years. 
b Excess odds ratio, as an indicator of the radiation-induced risk in a case–control study, with interpretation 
similar to ERR. 
c Based on findings of the 1st screening cycle, for thyroid dose range < 5 Gy. 

Until the mid-20th century, radiotherapy was used for treatment of various 

benign diseases, such as tinea capitis (ringworm of the scalp), and even some 

conditions that are no longer considered diseases, namely enlarged thymus and 

tonsillar hypertrophy (Table 2). Depending on the treatment target, the average 

thyroid doses varied from about 0.1 Gy in patients treated for tinea capitis (Sadetzki 

et al., 2006) to 1.3 Gy in patients with enlarged thymus (Adams et al., 2010). In 

studies of the long-term risk of thyroid cancer after radiotherapy for childhood 

cancer, the dose to the thyroid reached up to 50 Gy (Sigurdson et al., 2005; Bhatti et 
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al., 2010; Inskip et al., 2016). A pooled analysis of 12 studies on thyroid cancer risk 

after external radiation exposure in childhood (Veiga et al., 2016) showed a thyroid 

cancer risk that increased steeply with thyroid doses up to 10 Gy and then levelled 

off at doses of 10–30 Gy, followed by a gradual decrease in risk for doses exceeding 

40 Gy. A closer look at the range of low thyroid doses of less than 0.2 Gy revealed a 

linear dose–response relationship between thyroid dose and thyroid cancer risk, with 

no evidence of dose threshold (Fig. 8) (Lubin et al., 2017). Within this dose range, 

the dose–effect association was greater at a younger age at exposure (Fig. 9) and a 

younger attained age, and persisted more than 45 years after exposure (Veiga et al., 

2016; Lubin et al., 2017). 

 

 

 

 

 

 

 

 

 

Fig. 8. Relative risk (RR) of thyroid cancer in the low-dose range (< 0.2 Gy) compared with the 
dose category of 0 (reference), with corresponding 95% confidence intervals. The RRs were 
estimated using data pooled from nine cohort studies and adjusted for study, sex, age, other 
study-specific factors, and chemotherapy exposure. The line was fitted based on the dose 
category-specific RR estimates for illustrative purposes. Adapted from Lubin et al. (2017). 
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Fig. 9. Relative risk (RR) of thyroid cancer at 0.2 Gy by age at exposure, with corresponding 
95% confidence intervals. The risk of thyroid cancer at 0.2 Gy is compared with that in a non-
exposed group by age at exposure. The RRs were estimated using data pooled from eight 
studies and adjusted for study, sex, age, and other study-specific factors. Compiled from 
Veiga et al. (2016). 

There have also been studies examining potential differences in the magnitude of 

radiation effects on thyroid cancer by certain characteristics. Studies on thyroid 

cancer risk after external irradiation in childhood provided some evidence of higher 

risk in those exposed at a younger age (Furukawa et al., 2013; Veiga et al., 2016; 

Lubin et al., 2017). A similar tendency of decreasing risk with age at exposure was 

also observed in studies on 131I-induced thyroid cancer risk after the Chernobyl 

accident (Brenner et al., 2011; Zablotska et al., 2011; Tronko et al., 2017a). Although 

thyroid cancer occurs more frequently among women than among men, no 

consistent difference in radiation-induced thyroid cancer risk was found between 

men and women (Zablotska et al., 2011; Furukawa et al., 2013; Veiga et al., 2016; 

Lubin et al., 2017; Tronko et al., 2017a). Papillary carcinoma is the most common 

type and is most frequently seen after radiation exposure, but studies have not found 

clear differences in radiation-induced risk between thyroid cancer subtypes (i.e. 

papillary vs non-papillary tumours) (Veiga et al., 2016). 
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4.5.5 Sources of uncertainty in the assessment of the risk of radiation-
induced thyroid cancer 

Assessment of the risk of radiation-induced thyroid cancer 

To assess the risk of radiation-induced thyroid cancer in a given population, three 

main elements are needed: (i) an estimate of the dose to the thyroid, considering all 

sources of exposure (external radiation and internal contamination due to ingestion 

and inhalation) and taking into account variation with age; (ii) a risk model, 

characterizing the relationship between the dose and the excess risk of thyroid 

cancer and taking into account modifying factors of this dose–risk relationship, such 

as sex, age at exposure, and time since exposure; and (iii) the baseline rate of 

thyroid cancer in the study population, taking into account variation with age and sex 

(WHO, 2013; Walsh et al., 2014). 

Main sources of uncertainty in the assessment of thyroid cancer risk 

Optimally, the dose to the thyroid can be estimated from individual measurements 

of the thyroid incorporated activity and measurement of the external exposure. In 

such cases, the uncertainties in the estimated dose may have little impact on the 

estimated risk (Little et al., 2014, 2015). However, in most cases, individual exposure 

has to be estimated from questionnaire data and environmental measurements. 

Then, the main sources of uncertainty in the estimated dose are related to the 

accuracy of retrospective dosimetry and the reconstruction of cumulative dose over 

time (Drozdovitch et al., 2016). The reconstruction of doses from radioiodines is 

especially difficult, because of the short half-lives of some of the isotopes. Models 

used to estimate the dose to the thyroid from estimates or activity measurements are 

also associated with inherent uncertainties. Level of iodine deficiency and stable 

iodide intake are also major elements determining the dose to the thyroid. Correction 

for uncertainties and measurement errors depends on the magnitude and the nature 

(Berkson or classical, shared or unshared) of the uncertainties (Little et al., 2014, 

2015; Land et al., 2015). 

Several risk models for thyroid cancer have been derived from atomic bomb 

survivors (Preston et al., 2007; Furukawa et al., 2013; Jacob et al., 2014), cancer 

patients treated with radiation therapy (Veiga et al., 2016; Lubin et al., 2017), and 

people exposed after the Chernobyl accident (Brenner et al., 2011; Zablotska et al., 

2011; Kaiser et al., 2016; Tronko et al., 2017a). The most important uncertainties are 

related to the shape of the dose–risk relationship (linear extrapolation from relatively 
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high dose levels to low dose levels), the impact of modifying factors (sex, age at 

exposure), the duration of the minimum latency period (i.e. the minimum period after 

exposure after which an excess risk is detectable), and the nature of the radiation-

induced risk (absolute or relative excess). Variation of risk estimates with tumour 

type (benign vs malignant, nodule diameter, focality, singularity) has also been 

reported (Cahoon et al., 2017). Most health risk assessments have used models 

derived from atomic bomb survivors (WHO, 2013), but the applicability of such 

models to a situation of chronic low exposure is uncertain (UNSCEAR, 2015). 

Thyroid cancer is a rare disease, especially among children. This leads to 

uncertainties in the assessment of baseline rates when based on a population of 

limited size (Matsuda et al., 2010). Large variations in thyroid cancer incidence are 

observed by age, sex, and region. Baseline rates are strongly influenced by 

diagnostic methods, and improvements in these methods have led to an increase in 

incidence rates in the past decades in most industrialized countries. Because most 

thyroid cancer cases can be cured, mortality cannot be used to define baseline rates. 

Substantial uncertainty also occurs when current baseline rates are used in long-

term risk prediction. This method assumes the stability of baseline rates over time in 

the future, which is a major source of uncertainty (WHO, 2013). 

Impact of screening on the assessment of thyroid cancer risk 

Screening affects the assessment of the risk of radiation-induced thyroid cancer 

in three different ways. It has an impact on the baseline rate, the studied health 

outcome, and the estimated minimum latency period. 

Screening has an impact on the baseline rate of thyroid cancer, because much 

earlier stages of thyroid cancer are detected. On the basis of results of thyroid 

cancer incidence after the Chernobyl accident in Ukraine, it was estimated that the 

impact of thyroid ultrasound examination in Fukushima may have led to an increase 

by a factor of 7 compared with baseline rates predicted by a cancer registry (Jacob 

et al., 2014). More recently, it was assumed that the impact on baseline rates of the 

TUE programme in Fukushima was about 3 times that of the screening performed 

after the Chernobyl accident (Katanoda et al., 2016). In the Republic of Korea, 

thyroid cancer screening is the most important determinant of the epidemic of thyroid 

cancer, particularly among women. Thyroid cancer screening appeared to be 

associated with the increase in only one tumour type, papillary thyroid cancer, and to 

have no impact on thyroid cancer mortality (Ahn et al., 2016). 
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The studied health outcome is also affected by screening. The detection of very 

small thyroid nodules (diameter, 5 mm) by ultrasound is very different from the 

diagnosis of a tumour on the basis of clinical indicators. Most of these small nodules, 

cancerous or benign, would have remained asymptomatic, possibly for decades. 

Thyroid examination may result in the detection of thyroid cancer at an earlier age 

and at an earlier stage compared with baseline registry data (Yamashita et al., 

2018). It is uncertain whether the dose–risk relationship for such small nodules is 

similar to that estimated for thyroid cancer, and the applicability of the existing 

models to predict risk of thyroid cancer detected by screening is uncertain. A recent 

study of people in Belarus exposed to radioactive releases from Chernobyl during 

childhood estimated the dose–risk coefficient according to malignancy and size of 

nodules. The authors concluded that the association was much stronger for nodules 

larger than 10 mm than for microcarcinomas (< 10 mm) (Cahoon et al., 2017). In a 

Ukrainian cohort of people exposed to radioactive releases from Chernobyl during 

childhood, the decrease in excess relative risk observed over the past 10 years may 

be explained by a decrease in the diameter of detected nodules (Tronko et al., 

2017a). 

Screening may challenge the current estimate (3–5 years) of the minimum 

latency period of thyroid cancer (see Chapter 4.5.4). If some of the screened nodules 

will develop into thyroid carcinoma, and if there is a dose–risk relationship with such 

small nodules, then an excess risk of thyroid cancer in a population could be 

detected before 3 years after exposure. However, currently there is limited scientific 

evidence for a dose–risk relationship between radiation exposure and papillary 

microcarcinoma of the thyroid. 

4.6 Experiences from previous nuclear accidents 

4.6.1 Background 

Although nuclear power plants must adhere to high safety standards, six decades 

of generating electricity with nuclear power has shown the potential hazards of both 

nuclear criticality and the release of radioactive materials. Since the first operation of 

a nuclear power plant for commercial use, in 1954, accidents involving meltdown 

have occurred at three nuclear power plants: Three Mile Island, USA (in 1979); 

Chernobyl, Ukraine (in 1986); and Fukushima Daiichi, Japan (in 2011). 
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Three Mile Island 

On 28 March 1979, a serious accident occurred at Unit 2 of the Three Mile Island 

nuclear power plant near Harrisburg, Pennsylvania, USA. A relatively minor 

malfunction in the secondary cooling circuit initiated the accident that caused the 

reactor’s shutdown, followed by failure of the pressure relief valve to close, allowing 

the coolant to drain away. As a result, the core overheated and suffered severe 

damage (U.S. Nuclear Regulatory Commission, 2013). Deficient control room 

instrumentation and inadequate emergency response training were to blame for the 

accident. 

Although the accident did not result in major releases of radioactive materials into 

the environment or radiation exposures of the public, there were almost no existing 

emergency plans for the local communities around Three Mile Island; therefore, the 

response to the accident was confusion (United States President’s Commission on 

the Accident at Three Mile Island, 1979). 

Chernobyl 

On 26 April 1986, the accident at the Chernobyl nuclear power plant, located in 

Ukraine (then a part of the former Soviet Union), occurred during an experimental 

test of the electrical control system as the reactor was being shut down for routine 

maintenance. In violation of safety regulations, the operators had switched off 

important control systems and allowed the reactor, which had design flaws, to reach 

unstable, low-power conditions. A sudden power surge caused a steam explosion 

that ruptured the reactor vessel, allowing further violent fuel–steam interactions that 

destroyed the reactor core and severely damaged the reactor building. 

Subsequently, an intense graphite fire burned for 10 days. The accident caused the 

largest release of radioactive materials into the environment ever recorded for any 

civilian operation (UNSCEAR, 2011). 

Precipitation, occurring during the passage of the radioactive cloud, deposited 

radionuclides over large areas. This led to a complex and variable contamination of 

land, water, and biota, and caused serious social and economic disruption for large 

populations in Belarus, the Russian Federation, and Ukraine (UNSCEAR, 2011). 

Fukushima 

On 11 March 2011, north-eastern Japan was struck by an earthquake of 

magnitude 9.0 (the Great East Japan Earthquake), followed by a major tsunami. 

These two disasters affected a wide area, including the Fukushima Daiichi Nuclear 
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Power Plant, in Fukushima Prefecture. The severe damage to the power plant 

resulted in the extensive release of radioactive materials into the environment. 

Although the Fukushima and Chernobyl accidents were both categorized at the 

same level (Level 7) on the International Nuclear and Radiological Event Scale, the 

radiation doses to the local population were considerably lower for the Fukushima 

accident than for the Chernobyl accident (IAEA, 2014b). 

Although the emergency response teams were dispatched by the government in 

a timely manner, the unprecedented demands for response to such catastrophic 

natural disasters hampered the response needed for the nuclear accident. Additional 

challenges, including disruption of critical infrastructure (e.g. electrical power, 

communication, and transportation), further complicated the emergency response to 

the nuclear accident (National Research Council, 2014). 

The chapters that follow discuss experiences from previous nuclear accidents, 

including dose assessment, thyroid screening, psychosocial health, and lessons 

learned. 

4.6.2 Radiation dose to the thyroid gland 

Three Mile Island 

The core melt at the Three Mile Island reactor led to the discharge of fission 

products that were mostly retained in the water, resulting in a relatively small 

environmental release of 5.5 × 1011 Bq of iodine-131 (131I). Therefore, exposures of 

the public to radiation were negligible (UNSCEAR, 2011). The estimated incremental 

excess doses within 50 miles (~80 km) and 5 miles (~8 km) of the nuclear power 

plant were less than 1% and about 10% or less of the annual background level, 

respectively (United States President’s Commission on the Accident at Three Mile 

Island, 1979). Radiation dose to the thyroid was not directly determined, but whole-

body measurements of local residents found no detectable levels of radiation (Leung 

et al., 2017). The average individual dose from external γ-radiation within 80 km of 

the plant was 15 microsieverts (μSv) (0.015 millisieverts [mSv]), whereas the 

estimated maximum effective dose was 850 μSv (0.85 mSv) (UNSCEAR, 1993). The 

estimated individual dose to the thyroids of children aged 1 year was 0.07 milligray 

(mGy) or less (IARC, 2000). 

Chernobyl 

The Chernobyl accident caused the largest uncontrolled radioactive release into 

the environment ever recorded for any civilian operation. It deposited radioactive 
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material not only over large areas of the former Soviet Union but also, to a lesser 

extent, in the rest of Europe. The radionuclides released from the reactor that 

caused exposure of individuals were mainly 131I, caesium-134 (134Cs), and 137Cs. 

The accident led to a release of about 1.76 × 1018 Bq of 131I into the environment 

(UNSCEAR, 2000a). Consequently, a large geographical area was radioactively 

contaminated and millions of people were exposed to radioiodines and other 

radionuclides. The lack of timely implementation of countermeasures, such as 

management of animal fodder and milk production in the former Soviet Union, led to 

high thyroid doses, particularly among children. 

After the Chernobyl accident in May–June 1986, large-scale monitoring was 

conducted in the three most contaminated countries: Belarus, the Russian 

Federation, and Ukraine. In total, by the end of June 1986, measurements of 131I in 

the thyroid had been performed for more than 400 000 people, including more than 

200 000 in Belarus, 45 000 in the Russian Federation, and about 150 000 in Ukraine 

(UNSCEAR, 2000a). Consumption of fresh milk from cows that had been grazing in 

pastures was the main pathway of radioiodine intake for a majority of the residents 

after the Chernobyl accident. The daily rate of consumption of fresh milk was found 

not to vary much with age; however, because the thyroid mass increases with age 

from birth to adulthood by a factor of about 10, the average thyroid dose for infants is 

about 10 times that for adults. This contributed to the large doses to the thyroid, 

especially in children living in rural areas in the vicinity of the damaged reactor. For 

example, about 55% of children younger than 3 years from evacuated villages and 

about 30% of children younger than 3 years from non-evacuated villages of the three 

southern raions (Bragin, Khoiniki, and Narovlya) of Gomel Oblast of Belarus, which 

neighbour the Chernobyl nuclear power station, received thyroid doses higher than 

2.5 Gy (Savkin and Shinkarev, 2007). (A raion is an administrative division, and an 

oblast is a region.) 

The distribution of individual thyroid doses estimated on the basis of direct thyroid 

measurements can be described with a log-normal function. This distribution can be 

applied to the individuals in an area with similar exposure conditions. An analysis of 

the distribution of the thyroid doses derived from direct thyroid measurements from 

226 children younger than 17 years from an evacuated village, Pogonnoe of Khoiniki 

raion of Gomel Oblast, showed that the geometric mean of that distribution was 

equal to 2.1 Gy, with a standard deviation of 3.1. The highest estimates of thyroid 

doses to the children derived from direct thyroid measurements were found to be as 
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high as 50 Gy (Shinkarev et al., 2008). A typical contribution of short-lived 

radioiodines to the thyroid dose for the public was within a few percent of the 

contribution from 131I after the Chernobyl accident. Among the short-lived 

radioiodines, iodine-133 (133I) and 132I (due to the intake of tellurium-132 [132Te] and 

its radioactive decay to 132I in the body) play a major role in terms of internal dose to 

the thyroid (Gavrilin et al., 2004). 

Fukushima 

The level of 131I released because of the Fukushima accident was estimated to be 

about one tenth of that released as a result of the Chernobyl accident (UNSCEAR, 

2014). After the Fukushima accident, in March–April 2011, in vivo monitoring of the 
131I content in the thyroid was conducted for slightly more than 1000 residents 

(WHO, 2012; UNSCEAR, 2014; IAEA, 2015b). Because of the small number, the 

measurements were only used to test a radioecological model of thyroid dose 

reconstruction. According to the UNSCEAR report, the settlement-average thyroid 

absorbed dose estimates in the first year after the accident for evacuated residents 

from Fukushima Prefecture were in the range of 0.007–0.035 Gy for adults and 

0.015–0.083 Gy for infants aged 1 year. For the residents from settlements in 

Fukushima Prefecture and six neighbouring prefectures that were not evacuated, the 

thyroid absorbed dose estimates are in the range of 0.001–0.017 Gy for adults and 

0.003–0.052 Gy for infants aged 1 year (UNSCEAR, 2014). However, because of the 

small number of direct thyroid measurements, the UNSCEAR estimates were based 

on an assumption that a substantial contribution to the thyroid dose was by ingestion 

intake of 131I. 

An analysis of direct thyroid measurements conducted on 26–30 March 2011 for 

1080 children from three settlements – Iwaki city, Kawamata town, and Iitate village 

– showed that inhalation intake of 131I was the dominant pathway, rather than 

ingestion intake (IAEA, 2015b). According to the International Atomic Energy Agency 

(IAEA) estimates, the geometric means of the distribution of individual thyroid 

equivalent doses for children aged 0–15 years derived from direct thyroid 

measurements were 3.2 mSv for 134 children of Iwaki city, 2.2 mSv for 647 children 

of Kawamata town, and 6.0 mSv for 299 children of Iitate village (IAEA, 2015b). The 

estimated internal thyroid doses to infants aged 1 year were mostly below 30 mSv 

(Kim et al., 2016). (Thyroid equivalent dose expressed in millisieverts is numerically 

equal to thyroid absorbed dose expressed in milligrays.) 
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It is worth noting that in the case of inhalation intake being dominant, the average 

thyroid dose to adults from 131I is smaller than that to infants from the same 

settlement by a factor of about 2 (rather than a factor of 10 when ingestion intake 

with cows’ milk was dominant), because a person’s breathing rate decreases with 

age from an infant to an adult by a factor of about 5. A typical contribution of short-

lived radioiodines to the thyroid dose for the residents who lived in areas where the 

main fallout occurred on 15 March 2011, and who did not consume contaminated 

drinking-water and food, is estimated to be within 15% of the dose to the thyroid from 
131I. The contribution to the thyroid dose for the residents who lived in areas where 

the main fallout occurred on 12 March 2011 might be as great as 30–40%. Among 

the short-lived radioiodines, the main contributors to the thyroid dose were 133I and 
132I (through intake of 132Te) (Shinkarev et al., 2015). 

4.6.3 Thyroid cancer screening 

Three Mile Island 

Because the amount of radiation received by any one individual outside the plant 

was deemed to be low, no thyroid screening was performed after the Three Mile 

Island accident. It was determined that any increase in cancer incidence, compared 

with background rates, would be impossible to detect. For example, one projection 

was that the risk of cancer death as a result of radiation exposure was 0.7 for the 

2 million exposed people. The projection indicated that there was a 50% chance that 

there would be 0 cancer deaths, a 35% chance that there would be 1 cancer death, 

and a 12% chance that there would be 2 cancer deaths as a result of radiation 

exposure (United States President’s Commission on the Accident at Three Mile 

Island, 1979). 

Chernobyl 

Before the Chernobyl accident, knowledge about risk of thyroid cancer after 

exposure to ionizing radiation was mainly based on findings from epidemiological 

studies of external X- and γ-radiation, showing higher radiation risk for children than 

for adults, with an increase in thyroid cancer incidence observed 10 years after 

exposure (NCRP, 1985). The issue of thyroid cancer risk after exposure to 131I was 

of special interest because of the ability of the thyroid gland to concentrate iodine. 

This puts the thyroid at potential risk from internal irradiation to radioactive isotopes 

of iodine, especially in children, who are potentially the most sensitive group (see 

Chapter 4.5.4). However, the data originated from long-term follow-up of patients 
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receiving radioiodine for diagnostic or therapeutic purposes, with very few children 

among the patients, precluding reliable thyroid cancer radiation risk estimates in 

children. The first reports on a large increase in the number of thyroid cancers in 

exposed children observed 4 years after the accident were published in Belarus, the 

Russian Federation, and Ukraine (Kazakov et al., 1992; Likhtarev et al., 1995; 

Goldman, 1997). After these reports, several health screening programmes, 

including thyroid screening, were initiated and carried out in collaboration with 

international organizations such as the International Atomic Energy Agency (IAEA), 

the World Health Organization (WHO), the Sasakawa Memorial Health Foundation, 

the International Federation of Red Cross and Red Crescent Societies, and others. 

The humanitarian and scientific projects of the Sasakawa Memorial Health 

Foundation (May 1991–April 1996) focused on medical examinations for children in 

order to study the effects of low-dose radiation exposure on their health. These 

examinations were considered necessary to identify health problems in the residents 

of the affected areas, and to provide accurate information to the members of the 

population, who were experiencing significant fear and anxiety. The examination 

protocol included measurements of internal caesium-137 exposure dose using 

whole-body counters, clinical examination, thyroid ultrasonography, measurements 

of thyroid-related hormones (thyroid-stimulating hormone, free thyroxine), and 

measurements of thyroid auto-antibodies. In case of suspicious ultrasonography 

findings, fine-needle aspiration cytology (FNAC) and blood tests were performed in 

children from the five most affected regions in Belarus, the Russian Federation, and 

Ukraine. The protocol was developed based on experience gained during 

investigations of atomic bomb survivors in Nagasaki (Shigematsu, 2002). 

During 1991–1996, about 160 000 children in five areas of Belarus, the Russian 

Federation, and Ukraine were examined. Because of the detection of an enormously 

high prevalence of thyroid cancers in the Gomel region of Belarus, the Chernobyl 

Sasakawa Health and Medical Cooperation Project was extended for 5 years in that 

area. In total, more than 200 000 children were screened (Shigematsu, 2002). 

Soon after the Chernobyl Sasakawa Health and Medical Cooperation Project, 

several projects were launched, including the Chernobyl Thyroid Diseases Study 

Group (CTDSG), which performed thyroid screening examinations on residents 

exposed as children and adolescents (Stezhko et al., 2004). District-average thyroid 

doses in children and adolescents served as the main justification criterion for 

designing and implementing long-term cohort follow-up studies, such as the USA–
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Ukraine (UkrAm) cohort study and the USA–Belarus (BelAm) cohort study; both 

focused on thyroid cancer and non-cancer thyroid disease screening (Stezhko et al., 

2004). Cohort screening was developed in Ukraine and Belarus and performed 

jointly by radiation epidemiologists and clinicians. Supplementing the findings of the 

UkrAm cohort study, a screening cohort of those exposed in utero in Ukraine was 

initiated (Hatch et al., 2009). 

A detailed summary of three screening cohorts is presented in Table 3. First, a 

target population of 114 537 people who were born between 26 April 1968 and 26 

April 1986 and who had their thyroid radioactivity measured in 1986 shortly after the 

accident, was identified: 75 349 people in Ukraine and 39 188 in Belarus. A random 

sample of 13 243 persons was taken from 32 385 people in Ukraine, and another 

random sample of 11 970 persons was taken from 38 543 people in Belarus for more 

intensive examination (Stezhko et al., 2004). A screening cohort included individuals 

with low (< 0.3 Gy), medium (0.3–1.0 Gy), and high (> 1.0 Gy) thyroid dose 

estimates. The target population exposed in utero consisted of 5042 child–mother 

pairs in which women were pregnant at some time during the period 26 April–30 

June 1986, because exposure to 131I occurs for 2 months after the accident. The in 

utero screening cohort included 2582 child–mother pairs. 
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Table 3. Thyroid cancer and non-cancer thyroid disease screening cohorts in Ukraine and Belarus 
of people exposed to 131I in childhood or in utero 

Parameters Cohort 

Ukrainian screening 
cohort (UkrAm) 

Belarusian screening 
cohort (BelAm) 

Ukrainian in utero 
cohort 

Source population 75 349 39 188 5042 

Number of people selected 
for tracing and recruitment 

32 385 38 543 3045 

Screening cohort 
(percentage of people 
selected for tracing and 
recruitment) 

13 243 (41%) 11 970 (31%) 2582 (85%) 

Percentage of women 51 51 52 

Mean age at 
exposure ± standard 
deviation, years 

8.0 ± 4.7 8.2 ± 5.0 Mother was pregnant 
at some time during 
the period 26 April–
30 June 1986 

Mean 131I dose, mGy 650 580 By trimester: 
1st trimester: 2.1 
2nd trimester: 7.3 
3rd trimester: 131.1 

Number of screening 
cycles, years 

5 (1998–2015) 3 (1996–2008) 2 (2003–2015) 

Participation rate by cycle 
(number of screened 
subjects divided by total 
cohort size) 

1st cycle: whole cohort 
2nd cycle: 94% 
3rd cycle: 89% 
4th cycle: 77% 
5th cycle: 76% 

1st cycle: whole cohort 
2nd and 3rd cycles: N/A 

1st cycle: whole 
cohort 
2nd cycle: 70% 

Mean age at screening 
(range), years 

1st cycle: 22 (12–32) 
2nd cycle: 24 (15–35) 
3rd cycle: 26 (17–37) 
4th cycle: 28 (19–39) 
5th cycle: 35 (26–46) 

1st cycle: 22 (12–32) 1st cycle: 18 (16–20) 

Number of thyroid cancers 
detected 

1st cycle: 43 PTCs; 2 
FTCs 
2nd cycle: 30 PTCs; 1 
FTC; 1 MTC 
3rd cycle: 16 PTCs; 1 
FTC 
4th cycle: 15 PTCs; 1 
FTC 
5th cycle: 44 PTCs; 3 
FTCs 

1st cycle: 86 PTCs; 1 
FTC 
2nd and 3rd cycles: 71 
PTCs 

1st cycle: 6 PTCs; 1 
FTC 
2nd cycle: 2 TCs 
(data not published 
yet) 

Mean age at thyroid cancer 
surgery ± standard 
deviation, years 

1st cycle: 23.2 ± 5.1 
2nd cycle: 26.5 ± 5.1 
3rd cycle: 26.7 ± 5.6 
4th cycle: 29.0 ± 4.4 
5th cycle: 35.2 ± 4.9 

1st cycle: 23.0 ± 5.9 
2nd and 3rd cycles: 
24.4 ± 6.1 

1st cycle: 19.1 ± 1.2 

Other non-cancer thyroid 
findings significantly 
associated with 131I thyroid 
exposure 

Follicular adenoma 
Subclinical 
hypothyroidism 

Follicular adenoma 
Thyroid nodules 
Subclinical 
hypothyroidism 

No evidence of 
statistically significant 
association for non-
cancer thyroid 
outcomes 

FTC, follicular thyroid cancer; MTC, medullary thyroid cancer; N/A, not available; PTC, papillary thyroid cancer; TC, thyroid 
cancer. 
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During the period 1998–2007, the Ukrainian cohort members were screened four 

times (biannually) using the standard screening protocol. In 2009–2011, only people 

with thyroid nodules that were detected earlier were actively followed up and 

examined. The rest of the screening cohort, which consisted of subjects free of 

thyroid nodules, were passively followed up through the linkage of the cohort data 

with data from the Ukraine National Cancer Registry to identify thyroid and non-

thyroid cancers in the cohort (Tronko et al., 2012). A fifth screening cycle was 

performed in 2012–2015, and 76% of the initial screening cohort was examined 

(Tronko et al., 2017a). Two screening cycles were performed in the in utero 

screening cohort in Ukraine during 2003–2015; the participation rate in the second 

screening cycle was 70%. In Belarus, three screening cycles were performed, and 

the screening was then discontinued after 2008. 

The standard screening procedure included thyroid palpation, ultrasound 

examination, blood sampling for thyroid hormones, urinary iodine measurement, 

detailed dosimetric interview, and consultation and recommendations from an 

endocrinologist. In the case of detection of a thyroid nodule, a patient was referred 

for FNAC (Tronko et al., 2017b). The following criteria were used to decide whether 

FNAC was appropriate (Stezhko et al., 2004): 

(i) thyroid nodule or focal lesion with largest diameter greater than or equal 

to 10 mm detected by either palpation or ultrasonography; 

(ii) thyroid nodule or focal lesion with diameter 5–10 mm at least partially solid 

and with the following indirect signs of malignancy: 

• unclear or irregular borders 

• extension through thyroid capsule 

• heterogeneous or hypoechoic ultrasonic density 

• stippled calcification 

• increasing size during follow-up 

• abnormal lymph nodes of uncertain etiology; 

(iii) diffusely abnormal thyroid structure accompanied by unexplained cervical 

lymphadenopathy. In this case, FNAC of one or more lymph nodes is also to be 

done; and 

(iv) in the case of indeterminate or non-diagnostic cytology, FNAC is repeated up 

to three times within 1 year. 



 
85 

Although treatment was not a part of the protocol for the study, all individuals with 

thyroid disorders were/are offered standard medical care in the appropriate medical 

institutions in Ukraine and Belarus. 

Fukushima 

Based on the data from the Chernobyl accident, the increase in paediatric thyroid 

cancer incidence was not reported until 4–5 years after the radiation exposure 

(Kazakov et al., 1992). Also, the estimated internal thyroid doses were mostly below 

30 mSv in Fukushima residents, including infants aged 1 year (Kim et al., 2016; see 

Chapter 4.6.2). Given the low radiation doses, any overall increase in thyroid cancer 

incidence in residents of Fukushima because of radiation exposure from the accident 

would probably be too small to be observed. However, the general public in Japan 

became particularly concerned about the potential risk of childhood thyroid cancer, 

similar to what was observed after the Chernobyl accident. As a result of such 

concerns, the Thyroid Ultrasound Examination (TUE) programme was started on 9 

October 2011 (Yamashita and Suzuki, 2013). Because there are no survey records 

from before the accident, the “first round survey” is referred to as the “Preliminary 

Baseline Survey” and the “second survey” is denoted as the “Full-Scale Survey”. The 

protocol of the TUE programme has been described in detail elsewhere (Yamashita 

and Suzuki, 2013; Suzuki et al., 2016b; Yamashita et al., 2018) and is described 

briefly here. 

Preliminary Baseline Survey 

The Preliminary Baseline Survey, which was the first round of the TUE 

programme, was conducted from October 2011 to March 2014 for all inhabitants of 

Fukushima Prefecture aged 0–18 years on 1 April 2011. Among the 367 672 people 

in the target population, 300 473 subjects (81.7%), including evacuees currently 

living in other prefectures, voluntarily completed this survey (Suzuki et al., 2016a; 

Fukushima Medical University, 2017b; Yamashita et al., 2018). Written informed 

consent was obtained from the parents or guardians of all surveyed children. 

Full-Scale Survey 

The first Full-Scale Survey, which was the second round of the TUE programme, 

was conducted in the 2 years between 1 April 2014 and 31 March 2016. The 

participation rate in the primary examination was 71.0% of 381 256 people 

(Fukushima Medical University, 2017a). 
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The second Full-Scale Survey, which is the third round of the TUE programme, is 

in progress. 

Methods used in the primary examination of the TUE programme 

Ultrasonography was used to examine the thyroid gland (Fig. 10). The detailed 

protocol has been reported elsewhere (Yamashita and Suzuki, 2013; Suzuki, 2016; 

Suzuki et al., 2016b). In brief, the ultrasonography examination was conducted using 

portable equipment such as LOGIQ e Expert (GE Healthcare Co.) and Noblus 

(Hitachi-Aloka Co.). This highly sophisticated method was able to detect nodules and 

cysts smaller than 1 mm in diameter and record thyroid volume and other findings, 

such as congenital defects and ectopic thymus. In cases with nodules, the examiner 

recorded the multifocality of nodules and the location of the largest nodule, and 

measured the greatest dimension of the largest nodule. In cases with cysts, the 

examiner also recorded the multifocality of the cysts and the location of the largest 

cyst, and measured the greatest dimension of the largest cyst. The primary 

examination aimed at detecting nodules or cysts by ultrasonography and used a 

classification system, divided into three categories. Those in category A were 

recommended to undergo another primary examination. This category was also 

further divided into two categories: A1, for those without nodules or cysts, and A2, for 

those with nodules up to 5.0 mm and/or cysts up to 20.0 mm. Category B included 

those with nodules larger than 5.0 mm and/or cysts larger than 20.0 mm, who were 

then recommended to undergo a confirmatory examination. Subjects in category C 

required immediate examination as a result of a finding of a large or suspicious 

thyroid tumour or lymph node. 
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Fig. 10. Flow chart of the Thyroid Ultrasound Examination programme for residents of 
Fukushima aged 18 years or younger at the time of the accident. FNAC, fine-needle aspiration 
cytology; US, ultrasonography. 

Methods used in the secondary confirmatory examination of the TUE 

programme 

Subjects with nodules of diameter 5.1 mm or larger or cysts of diameter 20.1 mm 

or larger were recommended for a secondary confirmatory examination. Physicians 

credentialled by the Japan Thyroid Association, the Japanese Society of Thyroid 

Surgeons, or the Japan Society of Ultrasonics in Medicine (JSUM) performed the 

confirmatory examination using the highest resolution instrumentation. This 

confirmatory examination included a precise ultrasonography examination, blood and 

urine tests, and FNAC if ultrasonography findings of nodules or cysts met the FNAC 

criteria according to the guidelines issued by the Japan Association of Breast and 

Thyroid Sonology (JABTS) (Fig. 11; Suzuki, 2016; Suzuki et al., 2016a). 
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Fig. 11. Guideline for management of thyroid nodules. FNAC, fine-needle aspiration cytology. 
Reprinted with permission from Masafumi and Shinichi (2016). 

To minimize the risk of overdiagnosis and overtreatment, criteria were developed 

to decide on the necessity of a secondary examination based on the primary 

examination, and to evaluate the indication of FNAC in the secondary examination. A 

secondary examination was indicated for a solid nodule of diameter 5.1 mm or larger 

and a cyst of diameter 20.1 mm or larger. Accordingly, nodules of 5 mm or smaller 

are mostly re-examined in the next round of the primary examination. In addition, for 

the criteria used to decide on performing FNAC in the secondary examination, a 

protocol was prepared based on how to proceed with the diagnosis of nodular 

lesions formulated by the JABTS. FNAC is recommended for: nodules greater than 

5 mm in diameter, if there is strong suspicion of thyroid carcinoma using the JSUM 

diagnostic criteria; nodules greater than 10 mm in diameter with suspicion of 

carcinoma using the JSUM criteria; all nodules greater than 20 mm in diameter; and 

all cystic lesions greater than 20 mm in diameter (Suzuki, 2016). These guidelines 

were followed to avoid unnecessary FNAC, especially for nodules larger than 5 mm 

but smaller than 10 mm. FNAC would be performed only for nodules considered to 

be high-risk based on the ultrasonography findings among relatively small nodules. 

In addition to these criteria, if a malignancy was suspected or detected by FNAC, the 

malignant nodule would be assessed as to whether surgical treatment would be 

required. 

4.6.4 Findings from thyroid screening 

Chernobyl 

There is a well-established association between exposure mainly to 131I and risk 

of thyroid cancer in individuals exposed in childhood and adolescence after the 
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Chernobyl radioactive fallout and screened for thyroid cancer and non-cancer thyroid 

diseases (Brenner et al., 2011; Zablotska et al., 2011; Tronko et al., 2017a). 

During the five screening cycles in Ukraine, 148 papillary thyroid cancers (PTCs), 

eight follicular thyroid cancers (FTCs), and one medullary thyroid cancer (MTC) were 

detected in the cohort. During the three screening cycles in Belarus, 157 PTCs and 

one FTC were detected. After the first screening cycle in the Ukrainian in utero 

cohort, six PTCs and one FTC were detected (Table 3). Other non-cancer thyroid 

disorders found during screening included follicular adenomas (FA), thyroid nodules, 

and subclinical hypothyroidism (Zablotska et al., 2008, 2015; Ostroumova et al., 

2009, 2013; Cahoon et al., 2017). 

A review of the clinical follow-up of about 5000 thyroid cancers diagnosed and 

treated in Belarus, the Russian Federation, and Ukraine in patients exposed to 

Chernobyl fallout in childhood revealed a very low disease-specific mortality (≤ 1%) 

in these paediatric thyroid cancer patients (Tuttle et al., 2011). Although earlier 

reports suggested more aggressive behaviour of thyroid cancers possibly attributed 

to Chernobyl fallout exposure, it now seems that the initial presentation and early 

clinical course of most of these cases are very similar to those of both non-radiation-

associated paediatric thyroid cancers and thyroid cancers that arise after exposure 

to external beam irradiation (Tuttle et al., 2011). 

Little is known about the role of 131I exposure in the development of benign 

thyroid nodules including FA. Thyroid screening studies in Ukraine and Belarus 

reported findings related to 131I exposure and the development of benign thyroid 

nodules (Zablotska et al., 2008, 2015; Cahoon et al., 2017). A statistically significant 

positive dose–effect relationship between FA and thyroid exposure to 131I was 

reported in screened individuals who were exposed when younger than 18 years, 

11–15 years after the exposure in Belarus and 12–14 years after the exposure in 

Ukraine (Zablotska et al., 2008, 2015). The risk of FA after thyroid exposure to 131I 

was comparable in both cohorts, with a mean thyroid dose of 0.56 Gy in the 

Belarusian cohort and 0.77 Gy in the Ukrainian cohort. The highest 131I-related risk of 

FA was observed in children in Belarus who were younger than 2 years at the time of 

the accident, and the risks diminished with age at exposure (Zablotska et al., 2015). 

Analysis of 881 thyroid nodules detected by ultrasonography followed by FNAC in 

the Belarusian cohort of about 12 000 screened individuals, described in 

Chapter 4.6.3, revealed a statistically significant positive association between 131I 

dose and all nodule groupings, and also neoplastic nodules larger than 10 mm in 
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diameter and single nodules (Cahoon et al., 2017). The major factor that modifies 

radiation-related risk of thyroid nodules was age at exposure (Cahoon et al., 2017). 

Further follow-up is required in this cohort to understand the possible progression of 

prevalent thyroid nodules and underlying biological mechanisms. 

The consequences of exposure to 131I during childhood on thyroid function after 

the Chernobyl accident are less clear. Functional thyroid diseases (hypothyroidism 

and hyperthyroidism) are much more prevalent in unexposed populations – 

compared with thyroid cancer, which is very rare – and could result in substantial 

morbidity in populations exposed to radioiodine. The association between 

hypothyroidism and 131I exposure is understood based on studies of patients treated 

for benign thyroid diseases with very high therapeutic doses of 131I (30–80 Gy) (Ron 

and Brenner, 2010). The role of low to medium doses of internal exposure to 

radioiodine in terms of development of hypothyroidism is poorly understood and 

requires more research. A common pathway for induction of hyperthyroidism as well 

as hypothyroidism is thyroid autoimmunity, but the relevant available data from 

Chernobyl are inconsistent. Further analysis of longitudinal data from subsequent 

screening cycles is required to assess temporal trends (transitory or persistent) and 

shed more light on the natural history of radiation-related effects on thyroid function. 

Special attention has been given to those individuals who were in utero after the 

12th week of gestation at the time of the accident, because a fetus is more 

susceptible than an adult to the detrimental effects of ionizing radiation. In a thyroid 

screening cohort of 2582 child–mother pairs in Ukraine 20 years after the accident, a 

possible increase in the risk of thyroid carcinoma after exposure to radioiodine in 

utero was suggested, but no increased risks after radiation exposure were identified 

for ultrasonography-detected thyroid nodules or other conditions (Hatch et al., 2009). 

Larger studies are needed to provide more accurate risk estimates of thyroid cancer 

risk after 131I exposure in utero, and more prospective follow-up is necessary to 

evaluate temporal patterns of radiation-related risks in this cohort. 

Fukushima 

Results of the primary examination in the Preliminary Baseline Survey 

The findings of the primary examination by ultrasonography were divided into four 

categories: A1, A2, B, and C (see Chapter 4.6.3). The proportions of those who were 

classified into each of the categories were 51.5%, 47.8%, 0.8%, and 0% (1 person), 

respectively (Fukushima Medical University, 2017b). 
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The detection rates of thyroid cysts were 45.7% in males and 50.0% in females 

(Shimura et al., 2018). The proportion of those with cysts increased with age from 

1 year to 10 years, reached a peak at 11–12 years, and then decreased with age 

from 13 years or older in both sexes (Fig. 12). The ages showing the highest 

detection rates, 55.3% in males and 60.9% in females, were 11 years in males and 

12 years in females. Multifocal cysts were observed in 89.3% and 89.6% of subjects 

with thyroid cysts in males and females, respectively. The detection rate of thyroid 

cysts within each size category according to the maximum diameter, less than or 

equal to 3.0 mm, 3.1–5.0 mm, 5.1–20.0 mm, or greater than or equal to 20.1 mm, 

was 22.3%, 22.7%, 4.9%, and 0.0% in males and 28.8%, 18.0%, 3.2%, and 0.0% in 

females, respectively. 

 

 

 

 

 

 

 

 

 

Fig. 12. Age-dependent detection rate of thyroid cysts categorized by diameter (mm). 
Reprinted from Shimura et al. (2018), by permission of Oxford University Press. 

The detection rates of thyroid nodules were 1.0% in males and 1.7% in females 

(Shimura et al., 2018). A proportional increment in the detection rate of thyroid 

nodules with age was observed in either sex (Fig. 13). An evident difference 

between sexes was observed in subjects 10 years or older. There were age-

dependent increases in the median nodule diameter in both sexes, and no 

differences between sexes were evident. The ages showing the highest detection 

rates, 3.5% in males and 6.7% in females, were greater than or equal to 20 years in 

both sexes. Multifocal nodules were observed in 13.0% and 15.0% of subjects with 

thyroid nodules in males and females, respectively. The detection rate of thyroid 

nodules within each size category according to the maximum diameter, less than or 

equal to 5.0 mm, 5.1–10.0 mm, 10.1–20.0 mm, or greater than or equal to 20.1 mm, 
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was 0.5%, 0.4%, 0.1%, and 0.0% in males and 0.7%, 0.7%, 0.3%, and 0.1% in 

females, respectively. 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Age-dependent detection rate of thyroid nodules categorized by diameter (mm). 
Reprinted from Shimura et al. (2018), by permission of Oxford University Press. 

Results of the secondary confirmatory examination in the Preliminary Baseline 

Survey 

A total of 2294 subjects (775 males and 1519 females) in categories B and C 

were recommended to undergo a confirmatory examination; 116 cases (39 in males 

and 77 in females) were cytologically diagnosed with a malignancy or suspected 

malignancy by FNAC. There was no subject with a malignancy aged 12 years or 

younger for males and 7 years or younger for females; after that the number of 

malignant cases increased with age and was consistently higher in females than in 

males (Fig. 14). 
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Fig. 14. The number of cases diagnosed with a malignancy or suspected malignancy by fine-
needle aspiration cytology (FNAC) in the Preliminary Baseline Survey. Reprinted with 
permission from Fukushima Medical University (http://fukushima-
mimamori.jp/outline/report/index04.html). 

The detection rate of thyroid nodules cytologically diagnosed as malignant or a 

suspected malignancy within each size category according to the maximum 

diameter, less than or equal to 5.0 mm, 5.1–10.0 mm, 10.1–20.0 mm, or greater than 

or equal to 20.1 mm, was 0.000%, 0.013%, 0.018%, and 0.006%, respectively 

(Fig. 15) (Shimura et al., 2018). These results showed that malignant nodules of 

diameters 10.1–20.0 mm were predominant. The estimated number of subjects with 

nodules cytologically diagnosed as malignant or a suspected malignancy, as a 

proportion of the number of subjects with nodules in the categories of 5.1–10.0 mm, 

10.1–20.0 mm, and greater than or equal to 20.1 mm, was 2.7%, 11.0%, and 17.8%, 

respectively. 
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Fig. 15. Age-dependent detection rate of thyroid nodules diagnosed with a malignancy or 
suspected malignancy categorized by diameter (mm). Reprinted from Shimura et al. (2018), by 
permission of Oxford University Press. 

Results of the first Full-Scale Survey 

In the first Full-Scale Survey, the proportion of those who were classified into 

each of the categories A1, A2, B, and C was 40.2%, 59.0%, 0.8%, and 0% (no 

people), respectively (Yamashita et al., 2018). The rate of a category A2 finding 

increased from 47.8% in the Preliminary Baseline Survey to 59.0% in the Full-Scale 

Survey. The rate of a category B finding was 0.8% in both the Preliminary Baseline 

Survey and the Full-Scale Survey. Among them, 2227 subjects required a 

confirmatory examination because of a category B finding in the primary 

examination. FNAC revealed 71 subjects with a malignancy or suspicion of a 

malignancy; 50 of them underwent surgery, and all were diagnosed with thyroid 

cancer. 

The second Full-Scale Survey, which is the third round of the TUE programme, is 

still in progress, and nevertheless shows a similar diagnostic trend. 

Surgical methods 

Among 187 individuals diagnosed with nodules categorized as malignant or a 

suspected malignancy in the Preliminary Baseline Survey and the first Full-Scale 

Survey, 146 underwent surgery. Of those, 126 underwent surgery at Fukushima 

Medical University Hospital, and all except one patient were postoperatively 

diagnosed with thyroid cancer: 121 were PTC, 3 were poorly differentiated 

carcinoma, and for 1 the final diagnosis is pending. About 9% of these patients with 

thyroid cancer underwent total thyroidectomy, and about 91% underwent lobectomy 
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or hemithyroidectomy (Yamashita et al., 2018). Lymph node dissection was 

performed in all cases: 82.4% underwent central compartment dissection, and 17.6% 

were expanded to lateral compartments. 

The proportion of patients who underwent lobectomy is higher in Fukushima than 

in Chernobyl, because of concerns about age, the potential short- and long-term 

risks of radioisotope therapy, and concerns over decreased compliance with thyroid 

hormone replacement therapy based on age (Demidchik et al., 2006; Rumyantsev et 

al., 2011). Considering these reasons, as well as the consensus among thyroid 

experts in Japan, lobectomy was a preferred surgical method for these patients 

(Yamashita et al., 2018). 

It will be important to follow up these patients to determine whether this de-

escalation of treatment is equally effective at preventing progression and recurrence, 

to assess disease-specific medical and psychological morbidity, and to determine 

whether there are clinical and pathological features that may identify a group of 

paediatric patients with PTC where lobectomy may be sufficient to achieve 

remission. 

Complications 

Hypothyroidism was observed only in the patients who underwent total 

thyroidectomy and another patient who received thyroid hormone replacement 

therapy before the operation because of Hashimoto’s thyroiditis. There were a few 

cases of subclinical hypothyroidism with a slight elevation in thyrotropin levels. 

Neither hypoparathyroidism nor postoperative bleeding was observed. Unilateral 

prolonged paralysis of the recurrent laryngeal nerve was observed in only one 

patient (Yamashita et al., 2018). 

Pathological diagnosis 

The postoperative pathological diagnosis revealed 121 (98.6%) cases of PTC, 3 

cases of poorly differentiated carcinoma, and 1 case of thyroid cancer for which the 

final diagnosis is pending (Yamashita et al., 2018). The PTCs included 110 cases of 

the classical type, 4 cases of the follicular variant, 3 cases of the diffuse sclerosing 

variant, and 4 cases of the cribriform-morular variant. Intrathyroidal spread was 

observed in 61.6% of cases, and calcifications, such as psammoma bodies, were 

observed in 78.4%. The rates of lymph node metastasis and extrathyroidal tumour 

extension were also high, especially the rate of lymph node metastasis, which 

exceeded 70%. 
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Thyroid cancer risks related to radiation exposure 
Large-scale thyroid ultrasound examination showed an increased detection of 

thyroid cancer after the Fukushima accident (Yamashita et al., 2018). However, it is 

difficult at this point to attribute thyroid cancers detected in Fukushima to radiation 

exposure after the accident, for the following reasons. 

First, it is important to emphasize that thyroid exposure doses in Fukushima 

residents were much lower than thyroid doses in the population affected by the 

Chernobyl accident (see Chapter 4.6.2); that is, the estimated external radiation 

dose to the thyroid was less than 2 mSv for most patients with thyroid cancer 

(Suzuki, 2016; Fukushima Medical University, 2017b). So far, no case of thyroid 

cancer has been discovered in children exposed to more than 5 mSv. Doses 

received were similar between those with and without thyroid cancer; no higher 

cumulative dose was observed among the patients compared with young and 

adolescent residents of Fukushima. In addition, there were no significant differences 

in detection rate of thyroid cancer across four regions with different levels of radiation 

doses in Fukushima Prefecture (Suzuki, 2016). A simulation study using data from 

the Japan National Cancer Registry indicated that the number of observed thyroid 

cancer cases younger than 19 years could be expected in Fukushima under normal 

(no nuclear accident) conditions (Takahashi et al., 2017). Furthermore, the minimum 

latency period for radiation-induced thyroid cancer is currently considered to be 3–

5 years based on the Chernobyl experience (see Chapter 4.5.4), suggesting that 

radiation-induced excess risk of thyroid cancer would not be observable during the 

period when the Preliminary Baseline Survey was conducted (within the 3 years after 

the nuclear accident). Lastly, the characteristics of thyroid nodules are different from 

those observed after the Chernobyl accident. The number of cases diagnosed with a 

malignancy or a suspicion of malignancy by FNAC increased with age in Fukushima, 

whereas thyroid cancer was most commonly diagnosed at a younger age in the case 

of the Chernobyl accident (Suzuki, 2016; Fukushima Medical University, 2017b). In 

addition, an analysis of genetic alterations in 68 malignant nodules from post-

Fukushima cases suggested that the genetic pattern (i.e. high prevalence of the 

BRAF point mutation and low frequency of chromosomal rearrangements) was 

completely different from that of post-Chernobyl PTCs (Mitsutake et al., 2015). 
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4.6.5 Psychological outcomes 

Three Mile Island 

After the Three Mile Island (TMI) accident, very low levels of radionuclides were 

released into the environment (see Chapter 4.6.2); therefore, negligible physical 

health consequences were reported. However, the negative effects on the mental 

health of the population in the surrounding area have been documented (United 

States President’s Commission on the Accident at Three Mile Island, 1979; Dew and 

Bromet, 1993). 

Acute stress was quite severe after the TMI accident. It was particularly high in 

individuals who lived in the vicinity of the power plant or had young children at home 

(Fabrikant, 1983). In addition, the TMI accident resulted in heightened distrust of 

authority, particularly among women and those in their 30s (Fabrikant, 1983). The 

high level of acute stress in these particular groups could be attributed to the lack of 

prior knowledge about the risks after a nuclear accident, or the contradictory and 

confusing information they received, such as the advisory on evacuation after the 

accident. Whereas there was a recommendation during the crisis that pregnant 

women and preschool-aged children evacuate, approximately 66% of the population 

outside of this recommended group who lived within 5 mi (8 km) of the reactors, 

including many health professionals, also evacuated voluntarily (Houts et al., 1988). 

Of those, 80% reported that the main reason they evacuated was because of the 

confusing and conflicting information they had received. 

Although the acute stress appeared to dissipate soon after the accident, 

psychological impairments persisted in the long term in some individuals. A 

comparative study showed that mothers of preschool-aged children who lived near 

the TMI power plant had more symptoms of anxiety and depression at subclinical 

levels during the year after the accident, compared with their counterparts who lived 

near another power plant (Bromet, 1982). A later study, following up the women who 

lived around the TMI power plant up to 10 years after the accident, further identified 

a sizeable minority of women whose distress levels were consistently high over the 

long term (Dew and Bromet, 1993). 

Coping strategies commonly reported by survey respondents were taking 

protective actions such as evacuation, and being involved in meetings and 

organizations. This approach, termed “problem-focused coping”, was actually less 

effective in reducing the psychological and behavioural consequences of stress than 
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seeking support and counsel from friends and family and reframing the events, 

termed “re-appraisal coping” (Houts et al., 1988). 

Although the biggest public health problem as a result of the TMI accident is 

thought to be mental health issues (United States President’s Commission on the 

Accident at Three Mile Island, 1979), including long-term psychological impairment, 

no significant expansions in the mental health care system have been made to meet 

the long-term needs of the victims (Bromet, 2014). Given that poor mental health is 

associated with poor physical health, as well as early mortality and increased cost of 

medical services, the mental health effects of a disaster such as the TMI accident 

should be given high priority. 

Chernobyl 

The psychological consequences of natural and technological disasters have 

been studied extensively (Norris et al., 2002; Neria et al., 2008). Events that cause a 

threat to health as a result of toxic exposures are most likely to have long-term 

psychological impacts (Havenaar et al., 2002). The Chernobyl catastrophe was one 

of the most devastating and complex disasters in the history of the world, producing 

both ecological and social disruption. Twenty years after the Chernobyl accident, the 

United Nations Chernobyl Forum Expert Group “Health” concluded that the mental 

health impact was the largest public health impact of the accident (WHO, 2006). 

Populations affected by the Chernobyl accident have increased levels of 

depression, suicide ideation, anxiety (including post-traumatic stress symptoms), 

medically unexplained physical symptoms, and subjective poor health (Havenaar et 

al., 1997a; Allen and Rumyantseva, 1995; Bromet et al., 2002; Contis and Foley, 

2015). The risk factors that are likely to affect such psychological consequences 

include the severity of the disaster (e.g. death toll, scale of destruction, length of 

exposure, evacuation, and proximity to the epicentre), adequacy and timing of 

practical or emotional support, access to professional interventions, receipt of 

compensation and benefits, and individual- and group-level vulnerabilities (Bromet et 

al., 2011). The most vulnerable segments of the population were women who were 

pregnant or had young children in 1986, and liquidators (clean-up workers), 

particularly those who worked at the site between April and October 1986 (WHO, 

2006). 

Most of the mental health consequences observed in the population affected by 

the Chernobyl accident were subclinical and did not reach the level of criteria for a 
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psychiatric disorder (Havenaar et al., 1997a). Nevertheless, these subclinical 

symptoms had an impact on the illness behaviour of the affected population, 

increasing their use of medical care and their adherence to safety advisories (Allen 

and Rumyantseva, 1995; Havenaar et al., 1997b). To some extent, these symptoms 

were driven by the belief that their health was adversely affected by the disaster and 

the fact that they were diagnosed by a physician with a “Chernobyl-related health 

problem” (Bromet et al., 2002; Havenaar et al., 2003). 

The mental health effects were fuelled in part by an exaggerated sense of the 

danger from presumed exposure to radiation that was propagated by the local 

medical community and government officials. Liquidators, evacuees, and people 

living in contaminated regions were officially labelled as “sufferers” or “Chernobyl 

victims”, terms that were adopted by the mass media. Similarly to the atomic bomb 

survivors of Hiroshima and Nagasaki, the Chernobyl evacuees found themselves 

stigmatized when they were resettled in cities like Kiev, because the general 

population, and even the medical community, feared contamination (Bromet et al., 

2002). Being recognized as a “Chernobyl victim” entitled people to financial, medical, 

and educational compensation, which, combined with continuous monitoring by local 

and international organizations, may also have had an iatrogenic effect on 

psychological well-being. 

In addition to the national health follow-up programmes of populations exposed 

as the result of the Chernobyl accident implemented by the governments of Belarus, 

the Russian Federation, and Ukraine, foreign (including international) organizations 

conducted thyroid screening campaigns in the regions contaminated by the accident. 

These campaigns were welcomed by the local population, because of distrust in their 

physicians and medical authorities (Havenaar et al., 2003). However, there are no 

studies available that would allow a formal evaluation of the psychological impact of 

screening or other medical surveillance programmes in the populations affected by 

the Chernobyl accident. 

Although it is recognized that the Chernobyl accident led to a series of stressors 

that continue to the present, the scope and magnitude of the mental health effects 

cannot be specified with currently available data. Given the enormity of this trauma 

and its many implications, there is a need for more epidemiologically sound mental 

health research to clarify the long-term psychological consequences. 
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Fukushima 

After the Fukushima Daiichi Nuclear Power Plant accident in Fukushima 

Prefecture, the concerns of the public about radiation exposure and its health effects, 

particularly thyroid cancer in children, were heightened, as was observed after the 

Chernobyl accident. Because of the high level of public concern, the local prefectural 

government, together with Fukushima Medical University, initiated the Fukushima 

Health Management Survey, which included the Thyroid Ultrasound Examination 

(TUE) programme (Ishikawa et al., 2015). The primary purpose of the TUE 

programme was to alleviate residents’ concerns by providing them with an 

opportunity to have their health examined as a public health service (Yamaguchi et 

al., 2018). Questions remain about the overall public health benefits of the TUE 

programme. However, not providing the residents with the opportunity to have these 

examinations after the Fukushima accident might have been viewed as a neglect by 

the government of the residents’ rights to know their health status, and it might have 

posed an equal or greater risk of harm to the society (Yamaguchi et al., 2018). 

A cross-sectional study has shown that participation in the TUE programme was 

associated with reduced radiation-related anxiety (Murakami et al., 2018). However, 

despite the best intentions, the programme did not alleviate anxieties in some 

residents (Ohtsuru et al., 2015), such as those who received an A2 result of “no 

medical problem” (Midorikawa et al., 2017b; see Chapter 4.6.3). In response to 

potential anxieties that might have been experienced at each step of the TUE 

programme, various risk communication measures were implemented (Midorikawa 

et al., 2017b; Murakami et al., 2017). 

When the TUE programme was initiated, various protocol-related complaints and 

concerns kept residents from attending the prescribed primary examinations. To 

address these reservations, a call centre was established to allow people to ask 

questions of the staff of the Radiation Medical Science Center of the Fukushima 

Health Management Survey via phone call or email. 

In addition, a booklet and biannual newsletter were sent by post to the Fukushima 

residents to provide detailed information about the TUE programme, including 

benefits and possible harms of the thyroid examination. Furthermore, explanatory 

meetings on thyroid examination were offered to guardians, teachers, and the 

general public; these have been demonstrated to be effective in reducing anxieties 

(Hino et al., 2016; Midorikawa et al., 2017b). 
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Many participants in the TUE programme and their families were very anxious 

about the examination results. However, because of the high volume of 

examinations, it often took 2–3 months before results were received. This waiting 

period served to increase anxiety, so information booths were set up in the 

examination locations and provided an opportunity for the participants and their 

families to speak to a medical doctor who could explain the tentative results and 

provide counselling services as needed. These services proved beneficial, especially 

for participants with cysts smaller than 20.1 mm or nodules smaller than 5.1 mm, 

who therefore were not subjected to the confirmatory examination (see 

Chapter 4.6.3). The participants also received leaflets explaining what cysts and 

nodules are, why thyroid cysts were not cause for alarm, and why FNAC would not 

be performed for all cases with nodules. Furthermore, a medical hotline was 

established to make counselling by medical doctors available to everyone. 

During the subsequent examinations, which usually required two or three visits to 

one of the designated hospitals, fears about thyroid cancer and FNAC often 

increased among participants and their families. To address such concerns, a 

support team was organized consisting of clinical psychologists, medical social 

workers, and nurses who specialized in paediatric oncology. Members of the support 

team attended subsequent examinations with participants and their families to listen 

to their concerns and help them communicate more effectively with their doctors. 

When a malignancy was suspected or detected by FNAC, it caused tremendous 

concern about decision-making for surgical treatment or observation, possible 

additional treatments, and disease outcome. Similarly, when a thyroid nodule was 

diagnosed as benign, concerns about thyroid disease and its relationship to the 

accident were raised. To address concerns encompassing both medical and social 

aspects, the support team assisted the patients and their families throughout the 

process, from the informed consent to the end of the follow-up period. This ongoing 

communication with participants who underwent surgical treatment or observation 

may have helped to alleviate self-stigmatization of children and adolescents with 

thyroid nodules or cancers. Moreover, continued thyroid health monitoring services 

may reduce fears about the future. 

4.6.6 Lessons learned from past nuclear accidents 

As described in the previous chapters, the three past nuclear accidents, at Three 

Mile Island (TMI), Chernobyl, and Fukushima, were quite different in terms of the 
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amount of radionuclides released, pathways and levels of radiation exposure, and 

interventions administered. But the negative psychological impacts on the well-being 

of the affected populations were similarly observed after all three accidents. The 

extensive efforts that were made after the respective accidents yielded knowledge 

and lessons learned, which will be invaluable as preparations are made for any 

future nuclear accidents. 

Risk communication 

Before all three accidents, there was limited or no communication about the 

possibility of a nuclear accident occurring. The public was not well informed about 

the potential risks of such an event, such as radiation exposure and the harmful 

potential side-effects, in particular thyroid cancer. Because nuclear power plants 

must comply with stringent safety standards, it was assumed that such risk 

communication was not necessary. Therefore, when each accident occurred, the 

affected population was not able to understand the implications, and the result was a 

high level of fear and distrust. In TMI and Fukushima, the health professionals were 

not trained about how to react to a nuclear accident. In Chernobyl, health 

professionals, like the rest of the public, were not informed about the accident 

immediately after it happened and had no idea how to respond to it. This highlights 

the importance of informing and engaging the public and professionals about 

radiation-related risks and actions to take in the event of a release of radiation from a 

nuclear power plant before an accident happens. 

Risk communication after a nuclear accident is also critical to facilitate recovery 

from the accident and avoid additional adverse effects. After Fukushima, 

psychosocial health issues were managed through risk communication activities that 

involved active participation by the local residents (Yamaguchi et al., 2018). These 

included intensive education about thyroid ultrasound examination programmes 

through workshops, hotlines, leaflets, and other interventions (see Chapter 4.6.5). 

These risk communication activities improved participants’ understanding of radiation 

and cancer and helped reduce their anxiety (Hino et al., 2016). This stresses the 

importance of developing programmes to facilitate communication with the local 

community, thereby reducing psychological suffering and strengthening resilience. 

Helpful documents are available, such as from the International Atomic Energy 

Agency (IAEA) and the World Health Organization (WHO), which provide guidance 

and a framework for effective risk communication in health emergencies in general 
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(WHO, 2017b) and nuclear and radiological emergencies in particular (IAEA, 2012a), 

as well as tools developed by others, such as the United Nations Environment 

Programme, which can be used to expand public knowledge about ionizing radiation 

and possible associated health effects (United Nations Environment Programme, 

2016). 

Protective actions 

Urgent protective actions relate to the need to save lives, to prevent serious side-

effects, and to avert radiation doses; protective actions should be modified as more 

information becomes available, and discontinued when they are no longer justified 

(IAEA, 2012b). In contrast with the experience after the Chernobyl accident, after the 

Fukushima accident necessary actions to protect the population, such as sheltering, 

evacuation, and control of food, milk, and water, were successfully implemented, 

which prevented a higher exposure to radiation (IAEA, 2014b; National Research 

Council, 2014). However, in past accidents, stable iodine for thyroid blocking was not 

properly implemented, except in Poland (Nauman and Wolff, 1993). This represents 

a key opportunity for improvement. 

Thyroid dosimetry and screening after the accidents 

At the time of the Chernobyl accident, it was known that thyroid cancer could 

result from radiation exposure, as observed in the atomic bomb survivors of 

Hiroshima and Nagasaki. However, it was not yet established whether thyroid cancer 

could occur after a nuclear accident that resulted in the ingestion or inhalation of 131I. 

A large-scale assessment of radiation exposure of the thyroid was carried out in 

Belarus, the Russian Federation, and Ukraine soon after the Chernobyl accident. 

More than 5 years after the accident, large-scale thyroid screening campaigns 

started, after symptomatic thyroid cancers were diagnosed in exposed children. 

International collaborations between the United States National Cancer Institute, the 

ministries of health of Belarus and Ukraine, the Sasakawa Memorial Health 

Foundation, and other scientists have resulted in epidemiological studies of causal 

inference between 131I radiation exposure and thyroid cancer. These studies, 

conducted in populations exposed to substantial amounts of 131I, have significantly 

contributed to the understanding and management of thyroid cancer, particularly in 

children. 

In the case of the Fukushima accident, the atmospheric release of 131I was 

estimated to be about one tenth and the doses to the thyroid to be about one 
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hundredth those observed after the Chernobyl accident (see Chapter 4.6.2); hence, 

the radiation-related risk of thyroid cancer as a result of the Fukushima accident was 

estimated to be very low (Fig. 16). However, because of the well-documented health 

consequences of the Chernobyl accident, particularly the radiation-related increase 

in thyroid cancer in children and adolescents, and because of the lack of 

understanding about the level of their radiation exposure or the associated risk, the 

public’s concern about thyroid cancer was very high. Therefore, although they had 

very little radiation exposure, the residents of Fukushima strongly lobbied for 

attention to thyroid-related radiation effects. 

 

 

 

 

 

 

 

 

Fig. 16. Dose–response relationship between 131I thyroid dose estimates and incident thyroid 
cancer in a prospective cohort study after the Chernobyl accident. The solid line represents 
fitted relative risks (RRs) based on the linear excess relative risk model adjusted for sex, 
oblast of residence at the first screening examination, and continuous attained age. Data 
points and error bars represent dose category-specific RRs and corresponding 95% 
confidence intervals for the respective mean doses. The fitted linear dose response was 
adjusted to pass through the lowest 131I category. Reprinted from Brenner et al. (2011). 

Unlike after the Chernobyl accident, broad recordings of thyroid dosimetry were 

not obtained in Fukushima, because of the extraordinary demands on emergency 

response teams in managing the aftermath of the devastating earthquake and 

tsunami. However, Fukushima Prefecture established the systematic and large-scale 

TUE programme, as part of the detailed Fukushima Health Management Survey, to 

address public concerns about the effects of a nuclear accident on the thyroid. The 

TUE programme has provided a more detailed scientific understanding about the 

thyroids of children and adolescents and the prevalence of thyroid cancer in this age 

group. The children and adolescents who were identified with a thyroid cancer might 

have developed clinical symptoms later in life or remained asymptomatic. Some of 

the children and adolescents have likely benefited from identification of their cancer 
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at an earlier state of metastasis, avoiding late clinical diagnosis with more advanced 

metastatic disease that would have required more extensive treatment. Others likely 

underwent surgery for cancers that were not destined to go on to become 

symptomatic. Because of this, although the benefits of the epidemiological 

knowledge gained from the TUE programme as well as the thyroid screening 

programme implemented after the Chernobyl accident are substantial, the balance of 

clinical benefits and harms to individuals is not entirely clear. 

It is important to note that a large-scale thyroid screening or monitoring 

programme, like the ones conducted in Chernobyl and Fukushima, requires 

significant resources. In developing countries, undertaking a massive thyroid 

screening programme may redirect national resources from other areas of public 

health that would be a priority otherwise. 

Conclusions from the lessons learned 

Given the established association of thyroid cancer risk with radiation exposure, 

and the knowledge that risk is greater when exposure occurs at a younger age, 

thyroid cancer will remain a major concern in the case of future nuclear accidents, 

especially if high activities of radioiodine are released. The Expert Group members, 

some of whom were involved in the aftermath of the Fukushima accident, described 

the virtual impossibility of resisting calls for thyroid examination, even with the 

knowledge that the risk of thyroid cancer was very low. It is apparent from the 

Fukushima accident that such decision-making involves considerations beyond 

scientific evidence, including socioeconomic implications, health-care resources, and 

social values unique to each potential situation and local population. With education 

and a better understanding of radiation risks and thyroid cancer, perhaps in the 

future there will be more informed decision-making about whether and how to 

undertake thyroid health monitoring after a nuclear accident. Such decisions should 

be based on the reliable assessment of doses to the thyroid and associated thyroid 

health risks; communication and open dialogue among policy-makers, experts, 

stakeholders, and the community; and scientific evidence on the benefits and harms 

of thyroid health monitoring. 
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CHAPTER 5. Knowledge gaps 

The Expert Group recommends that consideration be given to offering a long-

term thyroid monitoring programme for higher-risk individuals after a nuclear 

accident (see Chapter 3, Recommendation 2), while recognizing that some gaps in 

knowledge need to be addressed to optimize the balance between benefits and risks 

of thyroid monitoring. The Expert Group supports the notion that well-designed 

studies after an accident may be warranted and can add significantly to the scientific 

knowledge, and encourages further research in the following areas with emerging 

data from previous nuclear accidents where applicable. 

Characterization of the relationship between radiation and thyroid cancer 

Over the past decades, data from epidemiological studies have demonstrated 

and quantified the relationship between radiation dose and the risk of thyroid cancer. 

Nevertheless, there remain uncertainties in the following areas that need to be 

addressed in order to better define higher-risk individuals. 

Potential interaction with, or effect modification by, other risk factors 

Besides radiation, several other factors have been suggested to affect thyroid 

cancer risk, such as ethnicity, weight, physical activity, diet (e.g. nutritional iodine 

status), menstrual and reproductive factors, and environmental chemicals (e.g. 

nitrates, polybrominated diphenyl ethers). However, little is known about potential 

joint effects of radiation and these factors on thyroid cancer risk, or potential effect 

modification of the radiation-related thyroid cancer risk by these factors. 

Dose–risk relationship by age at radiation exposure 

The risk of thyroid cancer appears to be much higher for exposures to children 

and adolescents compared with adults. A better quantification of risk associated with 

low-dose radiation exposure during childhood and young adulthood merits further 

research. In addition, the effect of low-dose radiation exposure in utero should be 

studied. 

Dose–risk relationship by tumour type 

Several recent studies have indicated variations in the strength of the association 

between radiation dose and thyroid cancer risk by tumour type (e.g. benign vs 

malignant, nodule diameter, focality, and singularity). Additional research with careful 
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consideration of tumour type is required for the quantification of the dose–risk 

relationship. 

Latency period 

The data from the Chernobyl accident have indicated that the minimum latency 

period after exposure after which an excess risk of thyroid cancer associated with 

radiation is detectable is about 3–5 years (i.e. no excess during at least about 

3 years after exposure), but the latency period can vary by age at exposure, dose of 

radiation, and other factors. Further data are needed to better understand the time 

sequence between radiation exposure and the development of thyroid cancer by 

different determinants of the latency period. 

Lifetime risk 

Although studies of Hiroshima and Nagasaki atomic bomb survivors and studies 

after the Chernobyl accident indicate that the radiation-induced thyroid cancer risk 

remains for decades after exposure, there is still uncertainty about the risk pattern 

over a lifetime; that is, when it peaks and when it diminishes with age, including the 

period of intense thyroid gland growth and hormonal stimulation during pre-puberty 

and puberty. 

Guidelines on thyroid dose assessment from internal exposure to radioactive 
iodine based on direct thyroid measurement 

Before a decision is made about whether to launch a thyroid monitoring 

programme, it is important to obtain realistic information on individual doses to the 

thyroid of the public exposed to radioiodines. The most objective assessment of 

individual thyroid doses from internal exposure to radioiodines, which is associated 

with the least uncertainties, can be obtained by conducting direct thyroid 

measurements on exposed people within a few weeks after a nuclear accident. 

Currently there are no international guidelines on how to assess thyroid dose 

based on direct thyroid measurements, or recommendations on how to provide 

large-scale measurement of the thyroidal 131I content for a large population in a short 

period of time after the accident. Using lessons learned from previous nuclear power 

plant accidents (Three Mile Island, Chernobyl, and Fukushima), guidelines should be 

prepared that include: recommendations for selecting devices to be used for 

measurement of the thyroidal 131I content, as well as the procedures to follow in 

preparing for and conducting measuring procedures; and a short questionnaire that 
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can be used at the time of direct thyroid measurement to conduct personal 

interviews on lifestyle and dietary habits from the time of the accident until the time of 

conducting the direct thyroid measurement. 

Benefits and harms to an individual of thyroid monitoring after a nuclear 
accident 

A person considering whether to undergo thyroid monitoring after a nuclear 

accident should have access to information to help them make an informed decision. 

However, currently information is lacking to assist individuals in decision-making. 

Such support for decision-making, at a minimum, should include: 

• information on potential benefits and harms of earlier diagnosis of thyroid 

cancer from a thyroid monitoring programme in relation to the extent of 

treatment, risk of treatment side-effects and complications, need for repeated 

treatment, future interventions, morbidity, and mortality; 

• information on treatment outcomes, including long-term consequences of 

medical and surgical treatment options for paediatric thyroid cancer (e.g. 

lobectomy vs total thyroidectomy, prophylactic central neck dissection vs no 

prophylactic central neck dissection, and indications for the use of post-

thyroidectomy radioactive iodine therapy); and 

• decision aids to support shared decision-making for individuals who develop 

thyroid cancer detected by thyroid monitoring in adult life, whether or not this 

is related to radiation exposure. 

Emerging data and experiences from the Fukushima Health Management Survey 

could help with the development of such information support. 

Potential psychological impacts of thyroid monitoring 

Currently, little is known about the psychological impact of thyroid screening or 

monitoring. After the Fukushima accident, various programmes were implemented to 

address the residents’ anxieties related to radiation and thyroid cancer risk, some of 

which have been demonstrated to be effective. However, longitudinal studies to 

evaluate the mental health impacts of a nuclear accident or of thyroid monitoring are 

needed to provide evidence-based guidance on how to plan and implement thyroid 

monitoring in a way that minimizes negative mental health consequences. 
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Quality assurance in thyroid monitoring 

The Expert Group recognizes the importance of developing the following to 

minimize potential harms due to a thyroid monitoring programme. 

Standardized protocols should be developed for ultrasonography imaging and 

reporting, as well as the potential application of newer imaging modalities, including 

elastography and three-dimensional imaging. Because the quality of ultrasonography 

is strongly investigator-dependent, a standardized protocol needs to be developed 

and implemented, and investigators need to be trained according to the protocol 

before thyroid monitoring programmes are started. 

Artificial intelligence for the digital diagnosis of images is also needed. In the past, 

computer-aided image analysis was not very helpful in improving thyroid diagnosis 

by ultrasonography, fine-needle aspiration cytology (FNAC), and histology. However, 

the use of artificial intelligence, for instance with deep learning approaches, is 

promising, and therefore these approaches should be tested systematically for use in 

thyroid monitoring programmes after a nuclear accident. 

Occurrence, etiology, and natural history of thyroid cancer 

Occurrence of thyroid cancer in children and adolescents 

A general understanding of thyroid cancer in children and adolescents could be 

advanced with research on the underlying prevalence of thyroid cancer in a 

screened population. Data on the ratio of thyroid cancer incidence and prevalence in 

screened versus non-screened children, adolescents, and young adults would also 

be useful. 

Potential heterogeneity of molecular mechanisms involved in thyroid cancer 
development across different populations 

Studies, although small and unvalidated, have suggested some differences in the 

molecular biology between thyroid cancers in Japan and in Europe. Tissue banks 

that contain thyroid cancer specimens exist only in developed countries. The further 

development of national and international biomaterial repositories and databanks 

that include ultrasonography images, FNAC, and histology will enable research 

evaluating the potential heterogeneity of molecular mechanisms involved in thyroid 

cancer development across different populations. 
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Genomic signature in thyroid cancer related to low-dose radiation exposure 

The increase in papillary thyroid cancers (PTCs) in young children and 

adolescents after the Chernobyl accident provided a better understanding of the 

genomics of PTC and an opportunity to investigate whether the molecular biology 

was driven by etiology or by the age of the patient. Over the past decade, the rapid 

developments in genomics, and improved access to large, well-annotated collections 

of human biological samples of cancers, have increased the understanding of how 

age affects the molecular phenotype of cancers in general. As a result, many 

molecular changes that were previously thought to be biomarkers of radiation in 

post-Chernobyl PTC may be in the process of being reclassified as being related 

more to the age of the patient at diagnosis. A large study of 649 cases, including 

more than 50 age-matched controls, is currently being conducted using whole-

genome sequencing and a variety of omics technologies by the Cancer Genome 

Atlas Consortium in the USA. This may afford the opportunity to validate the findings 

of previous studies. 

Natural history of thyroid cancer in children and adolescents 

Recent observational studies of adult thyroid cancer patients have shown that a 

significant number of papillary thyroid microcarcinomas do not grow during the active 

surveillance period, with the estimated lifetime probability of disease progression 

during active surveillance decreasing with age at presentation. Data are currently 

lacking on the natural course of thyroid cancer in children and adolescents.   
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ANNEX 1. Basic questionnaire used in Belarus after the Chernobyl 
accident 

1. Where did you live from 26 April 1986 through 31 May 1986? Indicate the dates 
of residence in each settlement. 

2. What was the date when cows (goats) were put on pasture in your village in 
1986? What was the origin of the fresh milk that you were drinking at that time? 

3. What was the daily rate of your consumption of fresh milk between 26 April 1986 
and 31 May 1986? 

4. What was the date when you started taking potassium iodide pills, and how many 
pills did you take? 

5. What was the date when you stopped consuming fresh milk? 
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ANNEX 2. Measuring protocol used 8–20 April 2011 in Tokyo for 
citizens of the Russian Federation after the Fukushima accident 

 
There are four sections of the measuring protocol: 
Section 1 – Passport identification 
Section 2 – Characteristics of the place of measurement 
Section 3 – Results of measurement 
Section 4 – Results of interview 

Section 1 
1. Last name, first name, patronymic 
2. Birth date 
3. Institution, occupation 

Section 2 
1. Place of direct thyroid measurement 
2. Date and time of direct thyroid measurement 
3. Device used to measure the exposure rate near the thyroid 
4. Result of measurement of the exposure rate outside (H = 1 m), µSv/h 
5. Result of measurement at the place of direct thyroid measurement, µSv/h 

Section 3 
1. Device used to measure surface contamination 
2. Results of measurement of surface contamination, particles/s/cm 

- above the head 
- hands 
- neck surface 
- clothes around chest 

3. Device used for direct thyroid measurement 
4. Geometry of the thyroid measurement 
5. Result of direct thyroid measurement, µSv/h 

Section 4 
1. Where did you live after 11 March 2011 until the date of direct thyroid 

measurements? Indicate the dates of residence in each locality. 
2. Did you consume leafy vegetables after the accident? What was the consumption 

rate (g/d)? 
3. Did you consume seafood (e.g. fresh fish) after the accident? What was the 

consumption rate (g/d)? 
4. Did you take potassium iodide pills? 
  



 
113 

ANNEX 3. Side-effects of thyroid cancer surgery 

 

Side-effect and estimated 
rate 

Symptoms Available rehabilitation 

Damage to the external branch 
of the superior laryngeal nerve 
Temporary or permanent, 0–
58% 
(Friedman et al., 2002) 

Vocal fatigue, loss of vocal 
range, breathiness, and throat 
clearing 

Not reparable. Speech 
rehabilitation to improve 
dysphonia. 

Loss of parathyroid gland 
function 
Temporary loss rate: 16.7% 
Permanent loss rate: 1.6% 
(Oda et al., 2016) 

Chronic hypocalcaemia: 
cramping, wheezing, 
dysphagia, trouble thinking 
clearly, cardiac arrhythmia, and 
death if uncontrolled 

Not reparable. Calcium 
replacement through oral 
calcium supplement and vitamin 
D. Parathyroid hormone 
injection is limited to the few 
refractory cases. 

Damage to the recurrent 
laryngeal nerve 
Unilateral injury rate: 8.2%, 
0.2% in specialized centres 
Bilateral injury rate: 1.3%, 0% 
in specialized centres 
(Francis et al., 2014; Oda et al., 
2016) 

Unilateral: breathiness, vocal 
fatigue, global fatigue, 
dysphagia, choking 
Bilateral: respiratory 
obstruction, often requiring 
tracheotomy 

Surgical repair or rehabilitation 
possible for permanent injuries. 
Return to full preoperative level 
of function uncommon. 

Need for thyroid hormone 
replacement 
After total thyroidectomy: 100% 
After lobectomy: 25% 
(Saravanan et al., 2002; Said et 
al., 2013) 

Hypothyroidism if untreated: 
fatigue, depression, weight 
gain, constipation, myxoedema 
(weakness, hair loss, oedema, 
heart failure) 

Treatable. Daily pill 1 hour 
before eating. Prescription 
medication requires regular 
blood tests and doctor visits. 
Thyroid hormone replacement 
therapy could negatively affect 
patients’ psychological well-
being (Saravanan et al., 2002). 
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