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L The Surveillance lab within the Clinical and Health Informatics Research Group at
T h e s u rve I lla n Ce McGill University brings together a vibrant multidisciplinary team of over 20
investigators, public health practitioners, clinicians, research staff, students and
L b software developers, all dedicated to conducting research and development of
a computational methods and software that has immediate impact on improving

population health through the science and practice of biosurveillance. The
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Surveillance Lab is funded by several sources including the Canadian Foundation
for Innovation, the Canadian Institutes of Health Research, a Canada Research
Chair, the Bill and Melinda Gates Foundation, the National Sciences and
Engineering Research Council, the Centers for Disease Control and Prevention and

many other sources. On many projects, we work closely with public health

practitioners in Quebec and from around the world. The computerized solutions we
have developed are used by public health agencies in Quebec, Canada, and

internationally.
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Detecting Events among Reports

‘Connecting-the-dots’ by integrating relevant
concepts from across reports remains a
significant problem [G7 initiative of the Global
Health Security Action Group (GHSAG)]

One task is to connect media reports from different
sources that refer to the same event



Needs for “Connecting Dots”

Common “Language” across reports from systems
- Extracted entities
- Free text (machine translated)

Methods for merging reports

- Distance metric (semantic, quantitative)
- Unsupervised clustering



Unambiguous Concept Representation

“Exploiting the promise of EIOS will
depend on our ability to align data across| reports
and systems with comparable and consistent
formats and contextual meaning.”

Haendel MA, Chute CG, Robinson PN. Classification, Ontology, and
Precision Medicine. N EnglJ Med. 2018 Oct 11;379(15):1452-1462.



Degrees of Meaning (Semantics)
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Uses of Formal Semantic Models

Searching heterogeneous data
Exchanging data among applications
Natural language processing
Integrating information

Encyclopedic representation of knowledge

Computer reasoning with data

Rubin, D. L., Shah, N. H., & Noy, N. F. (2008). Biomedical ontologies:
a functional perspective. Briefings in Bioinformatics, 9(1), 75-90.
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Making Sense of Detected Events

Interpreting new
information from
detected event

Possible biases in
reporting (with B o the meds fa
Nicholas King, McGill)  Bsl™ezns




Interpreting New Information

Task is to understand how an event changes risk assessment

Challenges include
— New information may be qualitative, uncertain
— Prior information on risk may be incomplete, low quality
— Other contextual information may be relevant (e.g., media bias)

— A mechanism is needed to update prior risk, accounting for event and
context

Methods for updating risk assessment
— Automated reasoning (i.e., using encoded knowledge to interpret data)

— Bayesian hierarchical modeling



Effects, Sources of Media Bias

Differences in media across countries can
— Affect reporting accuracy, sensitivity, specificity
— Create or amplify heath inequalities

Reporting may be influenced by many factors
— Geography, Time
— Media Penetration, Media Economy
— Disease, Social Advantage

Plan is to systematically define, identify, map biases
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] Iris Ganser (Alexandra Schmidt, Rodolphe Thiebaut)
Eva | uation Evaluation of event-based internet biosurveillance
systems for determination of seasonal influenza onset



Evaluation Project

Objective: To evaluate global variation in disease
outbreak detection from online media reports

Data sources: Online media reports (HealthMap, EIOS),
Laboratory (FluNet — “gold standard”)

Model organism: Human seasonal influenza (proxy)

Methods: Bayesian dynamic linear models (epidemic
onset and curve)

Scope: 24 countries across all Influenza regions



influenza case counts

Initial results - WHO FluNet data
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Initial Results - HealthMap Reports by Country

Total number of HealthMap events from January 2013 - July 2019
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HealthMap events

WHO counts

Initial Results — UK and France

Comparison of HealthMap and WHO counts for United Kingdom
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Comparison of HealthMap and WHO counts for France
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HealthMap events

WHO counts

Initial Results — Mexico and China

Comparison of HealthMap and WHO counts for Mexico
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Comparison of HealthMap and WHO counts for China

40-
30-

20+

8000 -

6000 -

N
o
o
o
1

2000~

Sep 2013 Sep 2014 Sep 2015 Sep 2016 Sep 2017 Sep 2018 Sep 201¢

Cor=0.397



Next Steps for Research

Detection and Reasoning (Pending funding)
— ldentify requirements for knowledge representation
— Establish EIOS test data set for ‘connecting dots’
— Assess potential of symbolic and Bayesian updating methods
— Develop review strategy for characterizing media biases

Evaluation Study (Spring 2020)
— Filter, extract, incorporate EIOS data
— Refine modeling strategy (model selection, time lag for FluNet)
— Inclusion of other data sources






