

ANALTYICAL TOOLS PROVIDING EPIDEMIOLOGICAL INSIGHT FOR EVENT-BASED SURVEILLANCE

2019 EIOS Global Technical Meeting 12-14 November 2019 | Seoul, Republic of Korea

PRESENTATION OUTLINE

Exploiting Twitter and Google Trends Exploiting case count data Exploiting air traffic data

Current

work

Future

work

Data analytics for aberration detection and identification of susceptible populations

1st October 2015 to 31st May 2016 Twitter data from **Data acquisition** 13 million of tweets Pruss et al (2017) English, Spanish, Portuguese **GitHub** Keywords "zika", "ZIKV" and "zica" **Proprietary** platforms Cost English, Korean, Russian GUI limited formatting/querying Google Trends Free gTrendsR Volume of search terms over package

time & space

Relative volume

Data analytics for aberration detection and identification of susceptible populations

Data processing

Remove re-tweets

Re-tweets by indicated by date and within **Tweet**

43% of remaining tweets are original

Geolocate tweets

1% users provide coordinates

50% tweets populated with coordinates (and resolution of geolocator)

Classify content of tweets

NLP and machine learning classifiers (e.g. Miller et al. 2017)

Symptoms Infection Prevention **Treatment**

Current work

Future work

Data analytics for aberration detection and identification of susceptible populations

Analytical tools

identification of susceptible populations

Aberration detection of symptoms

Augmenting

- Exploit clues from EBS data
- Output from classifier

Environmental / social determinates

Geolocated classified tweets **Disease susceptibility**

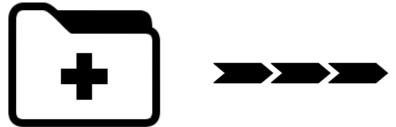
Current work

Future work

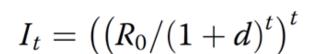
Exploiting EBS extracted case count data

Forecasting cases through time

Case data



NLP extracted cases Official surveillance reports Incidence Decay and **Exponential** Adjustment (IDEA) model



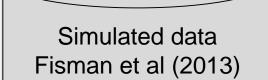
Number of confirmed/suspected cases, I_t Basic reproductive number, RO Discount factor, d Serial interval, t

- Forecasts epidemiological curve
- Estimates potential for disease spread
- Can signal change in outbreak
- Simple
- Not validated for real-time outbreaks

How few weeks of case data can provide reasonable model output?

Exploiting EBS extracted case count data

How many weeks of data are needed for reliable model output?



Four serial intervals, t

PAHO surveillance data for ZIKV

> 46 countries Jan. 2015 to Dec. 2016 Backfilled data to index case

Observed surveillance data: Cumulative incidence and frequency of

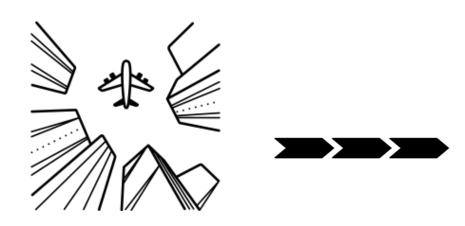
cases

SIR model

5-7 serial intervals, *t*, High variation

> Depends on country, data transformation

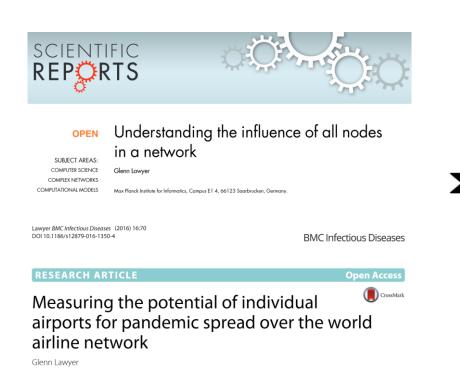
Smooth case data? (e.g. Majumder et al.)



- Disease spread through air travel
- Meta-population compartmental models
- Simpler tools?
- Just passenger volume data → inadequate

Current work

Future work



Can ExF predict the risk of disease spread earlier than the **IDEA** model?

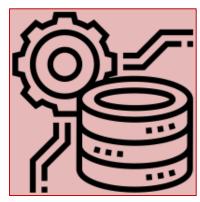
- Passenger volume data AND network topology → better!
- Airport expected force of infection (ExF)

Assessing ExF as early predictor for reported travel-acquired ZIKV cases in Canada

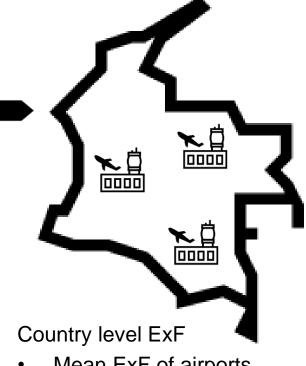
Data acquisition

- 46 countries in Americas
- Air traffic data (BlueDot/IATA)
- Reported travel-acquired cases
- Other covariates

Data processing



- Currently 29 countries
- Aggregating ExF to spatial resolution of case data

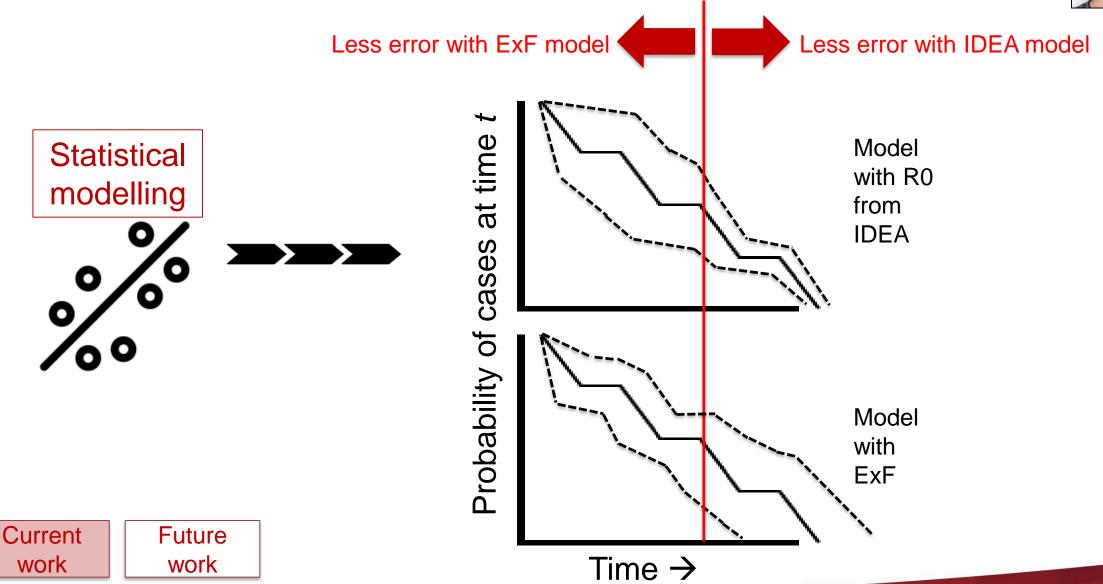


- Mean ExF of airports
- Max ExF of airports
- CoV ExF of airports

Current work

Future work

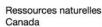
Exploiting air traffic data



Closing remarks

Challenge of developing data-driven models when data are scarce

- Get InSIGHT earlier: SIR \rightarrow IDEA \rightarrow ExF
- Exploit data extracted from EBS systems
- Exploit other data sources
- Integrate data types where possible



Department of Epidemiology, Biostatistics and Occupational Health