Opening and Welcome

Roberto Bertollini, Head of the WHO Brussels office opened the meeting and welcomed the participants. He noted that the importance of UV for health was underlined by the number of participants at the meeting. The Intersun programme has produced a number of valuable achievements, including the UV Index and educational and training materials. WHO needs to support member states with effective tools for risk management and risk prevention, and develop an information and communications strategy. It is important to convey the right message and balanced information to the public and policy makers.

Mr Craig Sinclair (Cancer Council Victoria, Australia) agreed to chair the meeting, and participants introduced themselves. The agenda was adopted and the Minutes of the previous meeting adopted with no corrections.

Update on the INTERSUN programme activities (E. van Deventer)

Emilie van Deventer described WHO’s work, role and core functions, and provided the background to the InterSun programme, the partners and stakeholders and the activities to date. The WHO UV programme does not undertake or fund research, but helps set research priorities and assess the findings. Funding of WHO’s UV activities is entirely extra-budgetary, and so dependent on national financial and in-kind contributions. Amongst the recent activities were a workshop to review the UV Index, and drafting a revision of the WHO booklet on sunbeds (which has been distributed for feedback). Work to add information to the WHO Global Health Observatory on regulation of sunbeds is continuing. UV country pages, similar to those for NIR, are now online (http://www.who.int/uv/global-project/en/).

In response to a question about how the current limited funding (with contributions only coming from ARPANSA) limits activities, Emilie commented that it limits publications and the organisation of technical meetings.

UV and sunbeds

The EC SCENIHR Scientific opinion on “Biological effects of ultraviolet radiation relevant to health with particular reference to sunbeds for cosmetic purposes” (L. Rushton, European Commission SCHEER)
The European SCHEER (Scientific Committee on Health and Environmental Risks, previously known as SCENIHR - Scientific Committee on Emerging and Newly Identified Health Risks) has drafted an opinion on the “Biological effects of UV radiation related to health with particular reference to sunbeds for cosmetic purposes”. A draft was released for comment earlier in 2016. The report reviews research published since a previous opinion prepared in 2006, and addresses three main questions:

1. Does new scientific and medical evidence (collected over the past decade) have a significant impact on the conclusion of the previous Opinion of 2006 with regard to the general health and safety implications relating to the exposure of people to UV radiation (UVR)? If yes, what are the key elements to be considered and how is the health of users of tanning devices for cosmetic purposes (sunbeds) likely to be affected (both positively e.g., Vitamin D regulation and negatively, e.g., skin and ocular melanoma).

2. Does SCHEER uphold the assessment of the SCCP that the limit value of the Erythemally-weighted irradiance of 0.3 W/m² (equivalent to an UV index of 12) ensures sufficient levels of protection for the health and safety of users? If this is not the case, please specify if it is sufficient to give specific information. If it is not sufficient to provide information, please specify the limit values above which adverse health effects can occur.

3. What should be the wavelength range for which the total Erythemally-weighted irradiance should be negligible (e.g. under 0.003 W/m²) to minimise the risks of developing skin cancer due to the use of sunbeds?

The report reviews current research findings and the situation in EU countries regarding UV output, compliance with limits and prevalence of use. It concludes that use of sunbeds could be responsible for about 5.4% of new melanoma registrations, and about 800 deaths associated with sunbed use per year in Europe. While UV-B from sunbeds could induce Vitamin D production, sunbeds are not needed to overcome Vitamin D deficiency. There are many other adverse health effects caused by UV (suppression of the immune system, aging of skin, ocular melanoma etc). For these reasons, no limits on irradiance or dose can be given to protect the health of users over any part of the UV spectrum.

SCHEER is now reviewing feedback on the draft opinion and the final version should be published later this year.

SCHEER is also working on an opinion about the health effects of UV-C, as there are many devices now available which operate in this part of the spectrum (for example, sterilisers and disinfection systems). While there are fewer studies available on the effects of UV-C it is clear that they are similar to those of UV-B, i.e. UVC is carcinogenic to humans.

A third opinion being prepared covers the safety risks associated with the use of LEDs (for example, used in lighting, TVs, toys etc). There is particular concern about the blue light component, and possible damage to the retina and disruptions of circadian rhythms.

In response to questions, Dr Rushton noted that:
- Only one new study has been conducted since 2006 on the risk of ocular melanoma in relation to sunbed use.
• It is hoped that responses to the feedback will be completed in July 2016, and that the final report will be published not long after that.

The US FDA Sunlamp proposed regulations (Sharon Miller, Food and Drug Administration, United States of America)

The FDA is updating performance Standards and Regulations for sunlamp products. Key goals are to align more closely with IEC Standards, reflect the current science and facilitate compliance by simplifying some requirements. Sunlamp products are now Class II Medical devices and must carry a label recommending against their use by under 18s.

In response to questions, Dr Miller noted that the FDA can inspect manufacturers as well as premises. It is hoped that all the changes will be in place by the end of 2016.

Data needed to inform WHO’s position regarding sunbeds (M Boniol, iPRI, France)

Mathieu Boniol presented an overview of the evidence linking sunbed use with increased skin cancer risk. While there is good evidence supporting the links, there are still some gaps in knowledge including:

• Risks of ocular disease (although in principle these should be prevented by the use of goggles);
• Whether the increased risk due to sunbeds is additive or multiplicative;
• Whether the characteristics of melanomas triggered by sunbeds are different (eg more aggressive) than those induced by solar UV;
• Improve knowledge of prevalence of use in different population groups;
• Whether sunbed bans result in increased outdoor exposures.

Skin type questionnaires (M Gledhill, Ministry of Health, New Zealand; C Baldermann, BfS, Germany)

A questionnaire widely used for assessing the Fitzpatrick Skin Type has some questions which appear unrelated to skin type, and there appears to be no knowledge of its origins and whether it has been validated or not. In 2002 the BfS established a round table on sunbeds, which independently developed a questionnaire. The scores from the questionnaire have been validated to show good correlation with Fitzpatrick Skin Type, and provide a simple, reliable and valid instrument for the assessment of sun sensitivity. The presenters concluded that the BfS questionnaire should be preferred.

Discussion on UV and sunbeds

The discussion was launched around how sunbeds are regulated in different countries, what are the barriers for further controls, and what could be tipping points for governments to consider policy reform. Comments made during the discussion after these presentations included:

• The focus is usually on melanoma, but non-melanoma skin cancers should not be forgotten as research shows that they too are associated with sunbed use, and they impose a high cost burden on health services.
• Home use should not be forgotten, as commercial sunbed bans might give rise to a hire industry and increased private ownership (e.g. home tanning parties in the UK). Commercial and home use is often regulated by different agencies. Craig Sinclair noted that in Australia the unintended consequences were surprisingly insignificant following a ban.

• In some countries sunbeds are treated as electrical consumer devices rather than as a public health issue. This limits the possibilities for taking action to reduce risks. For example, in Switzerland it is not possible to have an age-related ban as there is no legal basis for it at present.

• Countries need clear simple advice from WHO. But a ban would need to be supported by a good scientific basis and a cost-benefit analysis. To measure the economic impact in terms of job losses, it is important to be able to quantify the number of parlours.

• There needs to be more research on behavioural aspects, eg why do people with skin type I and II use sunbeds?

Overall it was concluded that there is a strong evidence base supporting the link between sunbed use and skin cancers. There is a strong economic argument for taking action. However we need more information on home use, and the behavioural aspects of sunbed use.

Update on UV and outdoor workers

Recent global activities on UV exposure assessment in outdoor workers (M. Wittlich, Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung IFA, Germany)

Dr Wittlich presented an overview of the Genesis UV measurement system for measuring occupational UV exposures. A structure to code occupations and activity groups has been developed to help differentiate within broader occupational groups. Some results will be published soon.

In response to questions, Dr Wittlich noted that pilots’ exposures to UV are being studied in the UK, and that while most exposure data is currently presented as daily totals, it is evaluated in half hour intervals.

How can modelling and surveys help assess UV exposure in outdoor workers? (D. Vernez, Institut universitaire romand de Santé au Travail, Switzerland)

As a complement to measurement of occupational UV exposures, Dr Vernez described a modelling approach using data on 3D ground irradiance and human models with variable postures. Recent applications include collaboration with ANSES to assess occupational exposures and derive yearly dose estimates. Future projects include calibrating the model against real data, and developing an activity-exposure matrix. It is difficult to define exposure simply on the basis of occupation; the activity is also an important variable.

Occupational UV induced skin cancer: A European Call for Action (S M John, University of Osnabruck, Germany)

The European Academy of Dermatology and Venereology (EADV) has launched a “Call to Action” on occupational UV exposures (from the sun) and skin cancer.
exposure is recognised as causing skin cancer in many countries but is generally poorly reported, and skin cancer caused by UV is recognised as an occupational disease in only 7 EU countries. Nevertheless, it is estimated that in Europe occupational skin cancers cost €500M per year. EADV considers that six actions are needed:

- Improve the legislative framework to protect outdoor workers more effectively
- Ensure official recognition of UV induced non-melanoma skin cancers, including actinic keratosis, as occupational diseases
- Develop easy tools to measure exposure to UV radiation in the workplace
- Build an evidence base on occupationally induced non-melanoma skin cancers, incl. actinic keratosis
- Encourage multi-stakeholder collaboration to promote sun-safe working practices
- Educate on the simple and cheap techniques of sun safe behaviour and prevention of skin cancer

In general discussion on this session, the following points arose:

- Both WHO and ILO have an interest in occupational UV exposure. In WHO there is an occupational health programme governed by the Global Plan of Action on Workers’ Health 2008-2017, looking at different risk factors. The University of Osnabruck will be asked to develop tools to measure the burden of disease from occupational UV exposure. Skin cancer is on the ILO list of occupational diseases and while there is no specific ILO programme on UV and skin cancer, it is covered as part of other more general projects (e.g. on protection of workers in the construction industry).
- There is progress in Europe in taking preventive measures, but mostly amongst large companies and the main problem is with small companies. Lack of recognition/compensation for diseases caused by occupational solar UV exposure is also a problem.
- In Europe, occupational cancers are handled by the Directive 2004/37/EC - carcinogens or mutagens at work, and occupational UV from artificial sources by the Directive 2006/25/EC - artificial optical radiation. There has been some confusion over this Directive. At the political level, it was decided to cover artificial sources, as natural UV source could not be regulated, and it was felt that it would be too difficult to distinguish skin cancer initiated during private leisure and during work time. In fact it is, of course, important to provide information to employees on sun smart behaviours, and while an employer cannot regulate the source of environmental UV, they can control workers’ behaviour.

Review of recent national or international UV activities

Summary of the UV Index workshop – Melbourne December 2015 (R Tinker, ARPANSA, Australia)

The workshop was organised as a pre-event to the 3rd International Conference on UV and Skin Cancer Prevention to respond to questions about the adequacy of the UV Index, and was attended by about 80 people. At the end of the workshop, it was concluded that the evidence remains limited to justify a review of the Index (including, say, the “no action” UVI being <3, and for extending the range to UVI >11). The UV Index is still a useful tool to estimate risks, but to remain relevant it needs to be adjusted to suit regional differences in climate/culture/skin
type. It was reiterated that national authorities are encouraged to tailor the public health messages as they see fit (as set out in 2002).

Presentations are available on the WHO website (http://www.who.int/uv/UVI_workshop_Melbourne2015/en/), and a draft journal publication is being finalized for submission.

Summary of the 3rd International Conference on UV and Skin Cancer Prevention – Melbourne December 2015 (Craig Sinclair, Cancer Council Victoria, Australia)

Some of the main areas covered at the workshop included:

- Melanoma rates are rising in many countries. There are signs of hope in Australia as the rates in younger age groups are decreasing.
- Economic analyses show that primary prevention is very cost-effective, compared with expensive drugs for treatment (500-600 k USD for a few months of longer life).
- A comprehensive community-wide approach is needed over the long term to decrease skin cancer incidence. Media campaigns on their own are insufficient.
- Vitamin-D production is a benefit of UV exposure, but the weight of evidence is not strong for most effects apart from bone health.
- There are many reasons to restrict use of sunbeds by under-18s. An outright ban on sunbeds can be effective, with no unintended consequences.
- Population-based screening is not effective to reduce melanoma mortality, and it is far better to invest in prevention.

The next International Conference on UV and Skin Cancer Prevention will be held in Toronto in May 2018.

The Australia/New Zealand position statement on Sun Exposure and Vitamin D - Risks and Benefits (Craig Sinclair, Cancer Council Victoria, Australia)

The 2007 position statement was updated in January 2016. The main areas of change include:

<table>
<thead>
<tr>
<th>Topic</th>
<th>2007 statement</th>
<th>2016 statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter sun exposure</td>
<td>Encourage 2-3 hours exposure per week in southern States</td>
<td>Spend some time outdoors with skin exposed in the middle of the day</td>
</tr>
<tr>
<td>Summer sun exposure</td>
<td>A few minutes of exposure with face and arms exposed is sufficient</td>
<td>Focus put on sun protection, as most people will get enough Vitamin-D from incidental exposure.</td>
</tr>
<tr>
<td>Recommended Vitamin-D levels</td>
<td>75 nmol/litre</td>
<td>50-60 nmol/litre</td>
</tr>
<tr>
<td>UVI</td>
<td></td>
<td>Messages more related to season than UVI, and using protection</td>
</tr>
</tbody>
</table>

UK NICE report on sun exposure risks and benefits (Eugene Healy, University of Southampton, the United Kingdom of Great Britain and Northern Ireland)
The goal of the NICE (National Institute for Health Care excellence) report was to provide balanced messages about the risks and benefits of sun exposure (www.nice.org.uk/guidance/ng34). The recommendations noted that some groups should take extra care in the sun (e.g., children, people with moles, or who spend a lot of time outside) but some have little exposure (e.g., for cultural reasons, indoor workers, institutionalised people). Messages should therefore be tailored for the groups or individuals being addressed. Messages should also follow the principles of behavioural change, recommending actions, explaining benefits of changing behaviour, and enhancing a person’s belief in their ability to change their behaviour.

Public health campaigns should avoid extremes (e.g., “don’t do this” but raise awareness of risks and benefits. A broad multi-agency approach is needed, including work with local agencies to address local needs.

Questions on the presentation included:

<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experience shows that balanced messages are very hard. For example, if</td>
<td>We have to be mindful of different abilities to deal with sunshine, and have a message which is balanced and says it is okay to get some sunshine, but still have to be careful of overexposure.</td>
</tr>
<tr>
<td>smoking increased Vit D, we would not advocate smoking.</td>
<td></td>
</tr>
<tr>
<td>Can balanced exposure be quantified?</td>
<td>No, we can’t give an exact rule for individuals as there are so many variables, including skin types. Giving rule could be detrimental. But in one on one discussion e.g., doctor and patient, we can start to tailor messages, for example by asking how long it takes to get sunburn.</td>
</tr>
<tr>
<td>It’s nice to think that a doctor can talk to individuals one on one, but</td>
<td>We would not want to add work, but hope that GPs would feel comfortable in doing this if provided with information. Little bits of information to a patient over a long time could be effective in changing behaviours, and also work with young children. Results occur over the long term.</td>
</tr>
<tr>
<td>how do you get the time for this in a short consultation?</td>
<td></td>
</tr>
<tr>
<td>Why not recommend Vitamin supplements for high risk groups?</td>
<td>If someone is Vitamin D deficient we do advise supplements, but question, however, whether long term supplementation is appropriate. There is also a view that sunlight exposure might have other health co-benefits (e.g., reduce blood pressure, benefits of outdoor activities), so the question goes beyond Vitamin D.</td>
</tr>
</tbody>
</table>

The new A/NZ Standards are for clothing and shade (Rick Tinker, ARPANSA, Australia)

AS/NZS 4399:1996 on clothing protection defines an ultraviolet protection factor (UPF) to rate
the effectiveness of material. ARPANSA initiated a revision in 2002. The Standard applies to garments with a sun protection claim which provide enough body coverage (e.g., not bikinis, T-shirt should cover shoulders and the upper/lower torso), and the introduction of specifications for hats. There are fewer UPF categories. Fabrics are tested when new and dry – testing wet and washed fabrics was considered but added too much complexity.

The shadecloth Standard AS 4174:1994 was originally for agricultural use and animal protection, but now includes personal and occupational protection, i.e., include shade sails, canopies, etc. Factors considered include the ability to block UV, design and installation of structures, diffuse and reflected UVR, etc. There is a new classification of UV effectiveness (UVE) in the range of 80% to 95%. ARPANSA provides a testing facility and rating tags for the garment industry as a service.

Reports on UV activities from collaborating centres and international organizations

International Labour Organization (ILO) (Shengli Niu)
ILO has no specific UV programme, but did publish a practical guide on UV protection 10 years ago. Current activities with the US Department of Labor will include outdoor UV exposures as an occupational hazard for young workers in the construction and agricultural industries. Other activities include the Vision Zero Fund (VZF), an initiative of the G7 countries in October 2015, which builds on a commitment to boost "labour rights, decent working conditions and environmental protection in global supply chains."

International Commission on Non-Ionizing Radiation Protection (ICNIRP) (Eric van Rongen)
ICNIRP is an NGO in official relations with WHO which was involved in the Melbourne conference and review of the UVI. UV was also discussed at the ICNIRP workshop at the IRPA conference in Cape Town – presentations are available on the ICNIRP website. Current UV work includes an update of the NIR protection principles, work on diagnostic devices, cosmetic devices and data gaps.

International Commission on Illumination (or Commission Internationale de l’Eclairage, CIE) (John O’Hagan)
Dr O’Hagan provided the background to the CIE and its involvement in UV since 1931. This includes some Standards relevant to UV and health. A report on weighing the pros and cons of maintaining UV in winter by artificial UV exposure is currently being prepared.

Euroskin (Lill Tove Nilsen)
Euroskin was involved in the 4th edition of the European Code against Cancer and the SCHEER opinion on sunbeds, and organised a mini-symposium on screening at the Melbourne conference. In the coming year Euroskin will undertake further work with SCHEER and host a workshop in Bergen on “Skin Cancer Prevention by Means of Behaviour, Supportive Environments and Early Detection”.

International Commission on Occupational Health (ICOH) (Fabriziomaria Gobba)
ICOH is an NGO in official relations with WHO which has a scientific commission on radiation and work, and at their last Congress held a session on optical radiation. Activities proposed for the future include research on the effects of UV on the eye and skin, inclusion of solar UV in legislation on the protection of exposed workers, and inclusion of UV related diseases in the
national lists of occupational diseases.

French Association Sécurité Solaire (Pierre Cesarini)
The ASS is a WHO Collaborating Centre which has just been redesignated, and its activities are mainly around training, lobbying and surveys. The organisation will work with WHO to disseminate teaching resources (over a 1 million students have been taught on UV in France). Programmes will also be expanded to other countries. There will be increased focus on artificial UV and on occupational primary prevention.

German Federal Office of Radiation Protection (BfS) (Cornelia Baldermann)
BfS is a WHO Collaborating Centre and has worked with several other organisations to develop a joint recommendation on UV and Vitamin D synthesis, and recommended actions. This is available in English on the BfS website. An alliance for UV protection (including BfS) is working on developing measures to improve implementation of UV protection measures. BfS has also completed a project comparing international legislation on UV including, for example, legislation on sunbeds.

Australian Cancer Council Victoria (Craig Sinclair)
The Cancer Council Victoria is a WHO Collaborating Centre. It hosted the Melbourne UV conference. A paper on the effects of the Australian sunbed ban will be published soon, and report that it has not resulted in a flood of beds on the Australian market. A social marketing campaign “UV – it all adds up” is currently in progress, and a project is under way to measure the impact of a Sun Smart app on behaviour.

UK Public Health England (PHE) (John O’Hagan)
PHE is a WHO Collaborating Centre. Current projects include the development of health promotion campaigns, a survey of national sunbed policies, exposures in day care nurseries and personal exposure measurements during recreational activities.

PHE has also looked at exposures of airline pilots (through aircraft windshields), who have a high incidence of melanoma. There is interest in extending this to UV measurements on the ground, but this could present some difficulties.

University of Osnabruck (Sven John)
University staff has published several papers related to occupational skin cancers and UV, and prepared a leaflet on the subject to bring it to the attention of politicians. Future work includes development of a research agenda, an inventory of available data, a global risk assessment, and the definition of methods to assess the global burden of skin cancer from occupational UV exposure. Risk communication for exposed workers is also of interest.

Thursday 2 June

The economic argument

The economics of skin cancer prevention (Louisa Gordon)
The cost effectiveness of skin cancer prevention: Belgian experience (Lore Pil)
Louisa Gordon and Lore Pil gave complementary talks on the economics of skin cancer prevention. Louisa Gordon approached it through a literature review, and Lore Pil described work in Belgium where the whole process had been modelled using cost estimates and estimates of the effectiveness of different types of intervention. Screening was also discussed.

Both approaches confirmed the cost-effectiveness of prevention, with a benefit/cost ratio of around 3/1. Screening was considered to be only marginally cost-effective, if that, apart from targeted screening of high risk groups.

Discussion after the talks focussed on occupational exposures and skin cancers, and whether the data allows distinguishing these from leisure time exposures. In Germany it has been estimated that about 10% of NMSC comes from occupational exposures, and that a 40% increase in UV exposure while working doubles the risk of skin cancer. UK studies had also put NMSC in the top ten of occupationally induced cancers. NMSC are 3 times more expensive to treat because of the sheer number of cases.

The bulk of the work has been performed in the last 5 years. Is more work needed at country level? The new data differentiating Overall it was concluded that data available now gives a very clear message that skin cancer prevention programmes are very beneficial for individual health and government health budgets.

Way forward

A UV research agenda was discussed in a closed session before the Melbourne 2015 meeting and has been discussed further with collaborating centres. Work on this will continue during the year. There was a suggestion that, in the light of experience from EMF research, the agenda should include material on good research practice to avoid low quality research.

A draft updated brochure on sunbeds has been prepared, and has been circulated for comment.

There was general support for continuation of these meetings, either yearly or every two years. There was a suggestion that in order to aid the development of ideas, future meetings could consider breakout sessions of smaller groups to discuss a particular topic. Some smaller countries felt they learned a lot from networking and discussions with other Member States.

WHO will develop a UV section of its website similar to that for EMF, where each country will have a page listing contacts and their yearly reports can be posted.

Opening of the session common to UV and EMF topics

Christian Decoster, President (ad interim) of the Steering Committee of the Belgian Federal Public Service for Public Health, Food Chain Safety and Environment and Roland Moreau, Director-General for DG Environment, welcomed the participants and expressed their pleasure at hosting the meeting. They highlighted the interest in both UV and EMFs in the Belgian context, and the need for constant re-evaluation of policies in the light of new evidence.

On behalf of the WHO, Dr Maria Neira, Director of the Department of Public Health,
Environmental and Social Determinants of Health, thanked the hosts for organising the meeting, and also thanked Emilie van Deventer for all her work. She noted that the environment was very important for health, and that 12.6 million deaths per year could be attributed to avoidable environmental risk factors, such as UV. The 20th anniversary of the EMF Project showed that it is still needed and appreciated.

Participants introduced themselves.

International Standards for NIR
Setting the scene *(Mirjana Moser)*
Mirjana Moser spoke to her presentation and outlined the perceived need for a common system of protection for all NIR. It was considered that this would reduce the burden on states, provide a consistent approach and reduce trade barriers.

Draft “Fundamental Safety Principles for Protection against NIR” *(E. Karabetsos)*
E. Karabetsos provided an overview of the draft Fundamental Safety Principles for Protection against NIR document. As a starting point, the similar document developed for ionizing radiation (IR) was used. It was considered that many of the existing IR principles could be applied (after modifications), to NIR too. The document was targeted at regulators who in a number of countries are also handling ionizing radiation, and therefore would already be familiar with the IR safety principles and requirements.

Discussion covered several aspects of the proposal:

- Is it realistic to try and harmonise standards (for example for UV protection) around the world? Should local characteristics merit different limits? (The ICNIRP representative noted that ICNIRP Guidelines are intended to protect all people, whatever the local conditions or characteristics).
- In Israel there has been success in applying the same principles to NIR as to IR.
- The range of NIR phenomena and the way they interact with the body make it difficult to envisage common protection principles which would not be so general that they could apply to any other agent. The IR BSS exist because IR has the potential to create cross-border hazards which therefore merit some international consistence in the approach to regulation: the same does not apply to NIR.
- It is not clear how to apply the draft NIR fundamentals to natural sources. Effort should be put into skin cancer prevention.
- It is not obvious how to apply the NIR fundamentals in real life. It would be good to have some examples.
- Colleagues are concerned that this will create a layer of bureaucracy which will take some time to develop and for which no sound case has been made.
- ICNIRP has published a rationale for NIR protection, and we have the WHO Model Legislation – were these considered or incorporated into the draft Fundamentals document? Answer: The draft was based on the IR – these suggestions are useful but are not in the scope of the fundamentals.
- There are several ongoing activities of the EMF Project, such as the RF EHC, the updated database of EMF Standards and the handbook for local authorities. The limited EMF Project resources should be dedicated to these before embarking on new work.