Long-term outcomes of children with suspected COVID-19 illness in Cape Town, South Africa.

COVID kids cohort, South Africa

Isabelle Dewandel, MD

Paediatrician and clinical researcher

Department of Paediatrics and Child health Stellenbosch University, Desmond Tutu TB Centre

idewandel@sun.ac.za

Overview

Introduction

COVID kids cohort

Preliminary data

Discussion

Background

- Children seem relatively protected from COVID-19
 - Majority of children asymptomatic / mild disease
 - Limited data in Sub-Saharan Africa other LMICs
 - The under-5 pneumonia mortality rate is significantly higher in LMICs compared to HICs
 - Effect of underlying co-morbidities such as TB, HIV, malnutrition?

Molteni et al. Lancet 2021.

Marangu et al. Paediatr Respir Rev. 2019.

Clinical outcomes COVID-19 in LMICs

Clinical Infectious Diseases

Marieke M. van der Zalm, 10 Juanita Lishman, 2 Lilly M. Verhagen, 23 Andrew Redfern, 2 Liezl Smit, 2 Mikhail Barday, 2 Dries Ruttens, 24 A'ishah da Costa, 2 Sandra van Jaarsveld, 2 Justina Itana, 2 Neshaad Schrueder, 5 Marije Van Schalkwyk, 6 Noor Parker, 2 llse Appel, 2 Barend Fourie, 2 Mathilda Claassen, 7 Jessica J. Workman, 1 Pierre Goussard, 2 Gert Van Zyl, 7 and Helena Rabie 2

¹Desmond Tutu Tuberculosis Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa, ²Department of Paediatrics and Child Health, Tygerberg Hospital, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa, ³Department of Pediatric Infectious Diseases Immunology, Wilhelmina Children's Hospital, University Medicine, Centre Utrecht, Utrecht University, Utrecht, The Netherlands, ⁴Department of Paediatrics, KU Leuven University, Leuven, Belgium, ⁵Division of General Internal Medicine, Department of Medicine, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa, ⁶Division of Adult Infectious Diseases, Department of Medicine, Tygerberg Hospital, Stellenbosch University, Autional Health Laboratory services, Cape Town, South Africa

(See the Editorial Commentary by Marais on pages e945-7.)

CID vd Zalm et al 2021

Design

- Observational cohort South Africa
- April-July 2020

Results

- 50% of hospitalizations <1year of age
- ±75% of infants needed respiratory support
- New diagnoses of PTB incidental? Other?
- PLHIV limited numbers, HEU

Conclusion

- Low mortality
- More severe COVID-19 respiratory illness in infants
- Long-term outcomes?

Clinical outcomes COVID-19 in LMICs

Fig 2. World map of national pediatric COVID-19 deaths (/1,000,000 children). The map was built with the geographic information system QGIS (v3.10, https://qgis.org) and the World Bank Official Boundaries Data Set (https://datacatalog.worldbank.org/dataset/world-bank-official-boundaries). Deaths are presented per million children. Countries of no pediatric case reported includes the country clearly report that there was no confirmed case in children in the national report as of December 7, 2020. National reports published more than 2 months before December 7 were included, if the countries were CDC COVID-19 Level 1 (low transmission) since the date of report.

https://doi.org/10.1371/journal.pone.0246326.g002

RESEARCH ARTICLE

The differential impact of pediatric COVID-19 between high-income countries and low- and middle-income countries: A systematic review of fatality and ICU admission in children worldwide

Taito Kitano 1*, Mao Kitano², Carsten Krueger¹, Hassan Jamal¹, Hatem Al Rawahi¹, Rachelle Lee-Krueger 3, Rose Doulin Sun¹, Sandra Isabel¹, Marta Taida García-Ascaso¹, Hiromi Hibino⁴, Bettina Camara⁵, Marc Isabel⁶, Leanna Cho 1, Helen E. Groves¹, Pierre-Philippe Piché-Renaud¹, Michael Kossov², Ikuho Kou³, Ilsu Jon³, Ana C. Blanchard¹, Nao Matsuda¹₀, Quenby Mahood¹¹, Anupma Wadhwa¹, Ari Bitnun¹, Shaun K. Morris¹, 12

PLOS ONE, Kitano Jan 2021

Clinical outcomes COVID-19 in LMICs

Fig 2. World map of national pediatric COVID-19 deaths (/1,000,000 children). The map was built with the geographic information system QGIS (v3.10, https://qgis.org) and the World Bank Official Boundaries Data Set (https://datacatalog.worldbank.org/dataset/world-bank-official-boundaries). Deaths are presented per million children. Countries of no pediatric case reported includes the country clearly report that there was no confirmed case in children in the national report as of December 7, 2020. National reports published more than 2 months before December 7 were included, if the countries were CDC COVID-19 Level 1 (low transmission) since the date of report.

https://doi.org/10.1371/journal.pone.0246326.g002

The differential impact of pediatric COVID-19 between high-income countries and low- and <u>middle-income</u> countries: A systematic review

U admission in children

Carsten Krueger¹, Hassan Jamal¹, Hatem Al Rawahi¹, Doulin Sun¹, Sandra Isabel¹, Marta Taida García-Ascaso¹ a⁵, Marc Isabel⁶, Leanna Cho 61, Helen E. Groves 1, Pierre-

ael Kossov⁷, Ikuho Kou⁸, Ilsu Jon⁹, Ana C. Blanchard¹, od¹¹, Anupma Wadhwa¹, Ari Bitnun¹, Shaun K. Morris^{1,12}

South Africa - Statistics

- Population of ±60 million people
- South Africa country of contrasts
- Considered MIC as per world bank
 - Highest GINI coefficient = inequality
- ~ 90% depend on public health care
 - •~20% PLHIV

* WHO COVID-19 dashboard

Tygerberg Hospital

- Public- sector health care service
 - Tertiary referral hospital
- Drainage area in the Western Cape
 - ~4,5 million residents
 - >100 primary care health facilities
 - ~ 400 paediatric beds
 - ~ 5000 paediatric admissions / year

COVID-19 Statistics in South Africa

COVID kids cohort

Pls: M vd Zalm/ H Rabie/ A Redfern

COVID-19 waves in South Africa

Children (0-13y) with respiratory illnesses or COVID PUI, presenting to Tygerberg Hospital

STEP 1 Routine care data collection

COVID + cases (although ethics of COVID- too)

- Demographics
- Co-morbidities
- Clinical presentation
- Laboratory findings
 - Hematology and chemistry
 - COVID testing, Ct values
 - Respiratory panel, RV16
- Imaging as per routine care
- Outcomes

Part of larger WC data-set (DATCOV)

Children (0-13y) with respiratory illnesses or COVID PUI, presenting to Tygerberg Hospital

STEP 1 Routine care data collection

COVID + cases (although ethics of COVID- too)

- Demographics
- Co-morbidities
- Clinical presentation
- Laboratory findings
 - Hematology and chemistry
 - COVID testing, Ct values
 - Respiratory panel, RV16
- Imaging as per routine care
- Outcomes

Part of larger WC data-set (DATCOV)

STEP 2

Prospective observational cohort (COVID+ and -)

- As step 1 PLUS additional aims
- <u>Immune response:</u> serum, paxgene, saliva
- Respiratory morbidity: non-invasive lung function
- Quality of life: effects of lockdown
- Virus: SARS-CoV-2 infectiousness and evolution
- Household data transmission

COVID respiratory Illnesses

Other respiratory viruses

Case-control design

3 months

Enrollment

18 months

12 months

24 months

Preliminary data: Demographics

Demographics	All, n=100	COVID-19 +, n=43	COVID-19 -, n=57	P-value
Age (months)	7 (2.0- 32.5)	8 (2.0-48.0)	7 (2.0-25.5)	0.59
Age subgroups • 0-3 months • 3-12 months • >12 months	36 (36%) 28 (28%) 36 (36%)	15 (34.9%) 10 (22.7%) 18 (40.9%)	21 (36.8%) 18 (32.1%) 18 (32.1%)	
Gender (male)	61 (61%)	26 (60.5%)	35 (61.4%)	0.92
Living with HIV	2 (2%)	1 (2.3%)	1 (1.8%)	1.00
HIV exposed	25/99 (25.3%)*	11/43 (26.2%)*	14 (24.6%)	0.85
SARS-CoV-2 exposure	20 (20%)	11 (25.6%)	9 (15.8%)	0.23
SARS-CoV-2 antibodies	43/85 (50.6%)	26/36 (72.2%)	17/49 (34.7%)	0.0006
Underlying comorbidities	37 (37%)	18 (41.9%)	19 (33.3%)	0.38
* One patient with unknown HIV exposure				

Known comorbidities	All, n=20	COVID-19 +, n=8	COVID-19 -, n=12
ТВ	5 (25%)	3 (37.5%)	2 (16.7%)
HIV	2 (10%)**	1 (12.5%)**	1 (8.3%)
Asthma	2 (10%)	0 (0%)	2 (16.7%)
Oncological	2 (10%)	1 (12.5%)	1 (8.3%)
Other	10 (50%)	4 (50%)	6 (50%)
New diagnosis	All, n=17	COVID-19 +, n=10	COVID-19 -, n=7
ТВ	12 (70.6%)*	7 (70%)	5 (71.4%)*
Other	6 (35.3%)	3 (30%)	3 (42.9%)

^{*} One known asthmatic patient with newly diagnosed TB

^{**} One patient known HIV/TB

Clinical presentation

Clinical presentation	AII, n=100	COVID-19 +, n=43	COVID-19 -, n=57	
Cardiovascular	2/100 (2%)	2/43 (4.7%)	0 (0%)	
Gastrointestinal	7/100 (7%)	4/43 (9.3%)	3/57 (5.3%)	
Respiratory	60/100 (60%)	19/43 (44.2%)	41/57 (71.9%)	
Inflammatory conditions	13/100 (13%)	4/43 (9.3%)	9/57 (158%)	
Other	18/100 (18%)	14/43 (32.6%)	4/57 (7%)	

0-3 months:
75% Lower respiratory tract infections
COVID-19 + (60.0%)
COVID-19 - (85.7%)

Severity of respiratory disease

Clinical diagnosis

Imaging

	All, n=100	COVID-19 +, n=43	COVID-19 -, n=57	P-value
Acute pneumonia	61 (61%)	19 (44.2%)	42 (73.7%)	
Severe pneumonia	27/61 (44.3%)	11/19 (57.9%)	16/42 (38.1%)	0.15

	All, n=100	COVID-19 +, n=43	COVID-19 -, n=57	P-value
Chest X-ray (baseline)	88 (88%)	35 (39.8%)	53 (60.2%)	
Abnormal %	61 (69.3%)	27 (77.1%)	34 (64.2%)	0.20
Severity - Unilateral - Bilateral	27 (44.3%) 34 (55.7%)	7 (25.9%) 20 (74.1%)	20 (58.8%) 14 (41.2%)	0.01
Number of zones affected (median)	2.0 (1.0-4.0)	3.0 (0-6.0)	1.5 (1.0-3.0)	0.50
Chest X-ray (follow up after 1 year)	40/88 (45.5%)	9/35 (25.7%)	31/53 (58.5%)	
Abnormal %	12/40 (30%)	5/9 (55.6%)	7/31 (22.6%)	0.10

Morbidity after admission

Morbidity after admission	All, n=100	COVID-19 +, n=43	COVID-19 -, n=57	P-value
1 year visits	55 (55%)	18 (41.9%)	37 (64.9%)	
Readmissions Respiratory	15/55 (27.3%) 9/15 (60%)	3/18 (16.7%) 3/3 (100%)	12/37 (32.4%) 6/12 (50%)	0.34 0.23
Clinic visits Respiratory Persistent or recurrent symptoms Respiratory	28/55 (50.9%) 12/28 (42.9%) 18/55 (32.7%) 12/18 (66.7%)	13/18 (72.2%) 5/13 (38.5%) 8/18 (44.4%) 5/8 (62.5%)	15/37 (40.5%) 7/15 (46.7%) 10/37 (27%) 7/10 (70%)	0.03 0.66 0.20 1.00
1.5 year visits	41 (41%)	12 (27.9%)	29 (50.9%)	
Readmissions	7/41 (17.1%)	5/12 (41.7%)	2/29 (6.9%)	0.02
 Respiratory Clinic visits* Respiratory Persistent or recurrent symptoms* Respiratory 	2/7 (28.6%) 18/40 (45%)* 9/18 (50%) 10/40 (40%)* 4/10 (40%)	1/5 (20%) 6/12 (50%) 1/6 (16.7%) 5/12 (41.7%) 1/5 (20%)	1/2 (50%) 12/28 (42.9%)* 8/12 (66.7%) 5/28 (17.9%)* 3/5 (60%)	1.00 0.68 0.13 0.13 0.52
2 year visits	21 (21%)	9 (20.9%)	12 (21.1%)	
Readmissions Respiratory Clinic visits** Respiratory Persistent or recurrent symptoms Respiratory One unknown *Two unknown	4/21 (19%) 2/4 (50%) 9/19 (47.4%)** 5/9 (55.6%) 4/21 (19%) 3/4 (75%)	4/9 (44.4%) 2/4 50%) 5/8 (62.5%)** 1/5 (20%) 3/9 (33.3%) 2/3 (66.7%)	0 (0%) 0 (0%) 4/11 (36.4%)** 4/4 (100%) 1/12 (8.3%) 1/1 (100%)	0.02 NA 0.37 0.05 0.27 1.00

After 1 year: COVID-19 +

20% UAO 60% cough 20% cough and wheeze

> After 1.5 year: COVID-19 + 100% cough

After 2 years: COVID-19 +

50% cough 50% cough and wheeze

Discussion

- Our cohort is a young cohort not typical as defined long COVID
 - Too young to show typical long COVID symptomatology as per case definition separate case definitions in different age groups?
- Unknown role of immunosuppressive conditions such as tuberculosis/CLHIV in long COVID
- COVID-19 negative control group interesting comparison group viral analysis ongoing
- Possible long-term lung health consequences? Data to follow

Conclusion

- ➤ Young children with COVID-19 mainly present with respiratory symptoms
 - > SARS-CoV-2 infected children with pneumonia presented more frequently with radiologically more severe pneumonia
- ➤COVID-19 positive children are more likely to be readmitted or seem to be more prone to seek medical care long-term
- ➤ Persistent symptoms are more often seen in COVID-19 positive children; mostly cough
- ➤ More follow up is needed to assess long-term outcomes
- ➤ The outcome of COVID-19 infection in children with underlying illness should be explored further
 - > Focus on TB and children living with HIV

Questions?

- Prof. Marieke van der Zalm / Prof. Helena Rabie / Dr. Andrew Redfern (Stellenbosch University)
- Dr. Lilly Verhagen (Radboud Nijmegen)
- Prof. Mark Cotton (Stellenbosch University)
- Department of Paediatrics and Child Health, Tygerberg Hospital
- MIS-C teams (University of Cape Town / Stellenbosch University)
- Paediatric team, Desmond Tutu TB Centre (Stellenbosch University)
- NHLS virology; Prof. Wolfgang Preiser, Prof. Gert van Zyl
- All other collaborators & funders
- Family

