Presentation and care of COVID-19 in children and young persons admitted with moderate to severe COVID-19

Presented by: Jeané Cloete
Agenda

1. Epidemiology of disease in South Africa
2. Severity of illness
3. Disease presentation
4. Severe COVID vs Multisystem inflammatory syndrome
5. Management
Agenda

1. Epidemiology of disease in South Africa
2. Severity of illness
3. Disease presentation
4. Severe COVID vs Multisystem inflammatory syndrome
5. Management
Epidemiology paediatric COVID 19 - Rate of SARS-CoV-2 % testing positive in South Africa

Used with permission DATCOV Hospital surveillance data - prepress Dr Waasila Jassat et al
Agenda

1. Epidemiology of disease in South Africa

2. Severity of illness

3. Disease presentation

4. Severe COVID vs Multisystem inflammatory syndrome

5. Management
Severity of illness

Mild or moderate disease
- No new
- Increased supplemental oxygen
- Other supportive treatment

Severe disease
- Supplemental oxygen
- Increased requirement from baseline
- Additional care and management

Critical disease
- Noninvasive or invasive mechanical ventilation
- Sepsis, multiorgan failure
- Rapidly worsening clinical trajectory
COVID-19 admissions, severe disease, and in-hospital deaths among children, in D614G, Beta, Delta and Omicron waves, South Africa *p<0.001; **p>0.05

<table>
<thead>
<tr>
<th>Variant wave</th>
<th>n with outcome</th>
<th>% (n) received oxygen</th>
<th>% (n) treated in ICU</th>
<th>% (n) severe</th>
<th>% (n) died</th>
</tr>
</thead>
<tbody>
<tr>
<td><1 year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D614G</td>
<td>581</td>
<td>15.3 (89) *</td>
<td>9.5 (55) *</td>
<td>27.4 (159) *</td>
<td>6.7 (39) *</td>
</tr>
<tr>
<td>Beta</td>
<td>955</td>
<td>22.8 (218) *</td>
<td>8.3 (79) *</td>
<td>30.9 (295) *</td>
<td>4.8 (46) *</td>
</tr>
<tr>
<td>Delta</td>
<td>1988</td>
<td>20.0 (397) *</td>
<td>8.0 (160) *</td>
<td>30.8 (613) *</td>
<td>5.2 (104) *</td>
</tr>
<tr>
<td>Omicron</td>
<td>2389</td>
<td>14.8 (353)</td>
<td>4.4 (106)</td>
<td>21.2 (507)</td>
<td>2.4 (58)</td>
</tr>
<tr>
<td>1-4 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D614G</td>
<td>217</td>
<td>10.6 (23) *</td>
<td>8.3 (18) *</td>
<td>18.0 (39) *</td>
<td>0.9 (2) **</td>
</tr>
<tr>
<td>Beta</td>
<td>294</td>
<td>15.3 (45) *</td>
<td>6.1 (18) *</td>
<td>22.8 (67) *</td>
<td>3.4 (10) *</td>
</tr>
<tr>
<td>Delta</td>
<td>744</td>
<td>15.1 (112) *</td>
<td>3.2 (24) **</td>
<td>20.7 (154) *</td>
<td>0.7 (5) **</td>
</tr>
<tr>
<td>Omicron</td>
<td>853</td>
<td>9.3 (79)</td>
<td>2.5 (21)</td>
<td>14.1 (120)</td>
<td>0.9 (8)</td>
</tr>
<tr>
<td>5-19 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D614G</td>
<td>1529</td>
<td>13.1 (200) *</td>
<td>7.1 (108) *</td>
<td>20.8 (318) *</td>
<td>3.9 (59) *</td>
</tr>
<tr>
<td>Beta</td>
<td>1471</td>
<td>20.9 (308) *</td>
<td>5.4 (80) *</td>
<td>29.0 (427) *</td>
<td>4.8 (70) *</td>
</tr>
<tr>
<td>Delta</td>
<td>4212</td>
<td>18.2 (768) *</td>
<td>4.9 (206) *</td>
<td>25.1 (1056)</td>
<td>2.9 (121) *</td>
</tr>
<tr>
<td>Omicron</td>
<td>3503</td>
<td>11.0 (384)</td>
<td>3.4 (118)</td>
<td>16.9 (593)</td>
<td>1.8 (62)</td>
</tr>
</tbody>
</table>

Used with permission from Presentation: DATCOV: Hospital surveillance for COVID-19 Omicron-dominated fourth wave – 4/02/2022
Compiled by Lovelyn Uzoma Ozougwu, Dr Waasila Jassat, Prof Lucille Blumberg, Richard Welch and DATCOV team
COVID-19 admissions, severe disease, and in-hospital deaths amongst individuals <20 years, in D614G, Beta, Delta and Omicron waves, South Africa

"Severe" defined as respiratory distress, oxygen, mechanical ventilation, high care / ICU care or death. * p<0.05; ** p>0.05

Used with permission from Presentation: DATCOV: Hospital surveillance for COVID-19 Omicron-dominated fourth wave – 4/02/2022
Compiled by Lovelyn Uzoma Ozougwu, Dr Waasila Jassat, Prof Lucille Blumberg, Richard Welch and DATCOV team
COVID-19 admissions, severe disease, and in-hospital deaths amongst individuals <1 year, in D614G, Beta, Delta and Omicron waves, South Africa

"Severe" defined as respiratory distress, oxygen, mechanical ventilation, high care / ICU care or death

* p<0.05; ** p>0.05

Used with permission from Presentation: DATCOV: Hospital surveillance for COVID-19 Omicron-dominated fourth wave – 4/02/2022
Compiled by Lovelyn Uzoma Ozougwu, Dr Waasila Jassat, Prof Lucille Blumberg, Richard Welch and DATCOV team
Pediatric hospitalisations due to COVID-19 during the first SARS-CoV-2 omicron (B.1.1.529) variant wave in South Africa: a multicentre observational study - Jeané Cloete, Annelet Kruger, Maureen Masha et al. Lancet Child and Adolescent Health 2022

COVID 19 Diagnosis (N=138)

- Combine Primary + Contributory: 64%
- Incidental accounted for 1/3 of patients admitted
- Mainly surgical patients that were swabbed for emergency or elective procedures
- Mainly asymptomatic for COVID 19

- Primary clinical diagnosis: 36%
- Contributory diagnosis: 20%
- Incidental diagnosis: 44%
Co morbid diseases

- Obesity
- Diabetic patients
- Asthma
- Cardiac disease
- Renal disease
- Immune deficiency

Co morbid diseases

- Obesity
- Immune deficiency
- Diabetic patients
- Renal disease
- Cardiac disease
- Asthma
- Co morbid conditions

Ex premature infants
Summary

- More children < 19 years admitted during Omicron wave
- Severity of illness was not worse
- Deaths were less
- Confounding factors: Other viral pathogens impact the numbers
- South African Children > 12 years were eligible to vaccinate as of October 2021
Agenda

1. Epidemiology of disease in South Africa

2. Severity of illness

3. Disease presentation

4. Severe COVID vs Multisystem inflammatory syndrome

5. Management
Disease presentation

- Respiratory illness
- Gastro-intestinal illness
- Neurological manifestation
- Other
Pediatric hospitalisations due to COVID-19 during the first SARS-CoV-2 omicron (B.1.1.529) variant wave in South Africa: a multicentre observational study - Jeané Cloete, Annelet Kruger, Maureen Masha et al. Lancet Child and Adolescent Health 2022

Symptoms (N=125)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>58 (46%)</td>
</tr>
<tr>
<td>Cough</td>
<td>50 (40%)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>30 (24%)</td>
</tr>
<tr>
<td>Difficulty in breathing</td>
<td>28 (22%)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>25 (20%)</td>
</tr>
<tr>
<td>Seizures</td>
<td>25 (20%)</td>
</tr>
<tr>
<td>Headache</td>
<td>7 (6%)</td>
</tr>
<tr>
<td>Skin rash</td>
<td>4 (3%)</td>
</tr>
<tr>
<td>Other</td>
<td>4 (3%)</td>
</tr>
</tbody>
</table>

- Most common symptom was fever
- 1/5 of patients had gastro-intestinal symptoms
- 1/5 of patients had seizures
Respiratory illness

- Mild to moderate respiratory distress
- Needing oxygen support if needed
- Co-infection with other respiratory viruses
- High risk infants – ex premature infants
Gastro-intestinal

- Presenting with Abdominal pain
- Vomiting and diarrhoea
- Omicron: Not MIS-C but COVID 19
- Moderate disease – needing supportive management
Neurological

- Marked increase in seizure presentation with Omicron
- High fever + febrile seizures
- Patients < 1 year and older than 5 years that presented with seizures
- Other pathology was excluded
Other

- Skin and joint manifestations – rare
- Self limiting
- No need for admission
Agenda

1. Epidemiology of disease in South Africa

2. Severity of illness

3. Disease presentation

4. Severe COVID vs Multisystem inflammatory syndrome

5. Management
Multisystem inflammatory syndrome in children

Child or adolescent < 19 years of age
Fever 38,5 C > 3days

And

At least 2
1. Rash, conjunctivitis or muco-cutaneous inflammation.
2. Hypotension or shock.
3. Features of myocardial dysfunction, pericarditis, valvulitis, or coronary abnormalities
4. Evidence of coagulopathy
5. Acute gastrointestinal problems

And

Elevated inflammatory markers: ESR, CRP, PCT

And

No other obvious microbiological cause

And

Evidence of COVID 19 infection and/or contact or Antibody positive

Characteristics and Outcomes of US Children and Adolescents With Multisystem Inflammatory Syndrome in Children (MIS-C) Compared With Severe Acute COVID-19

<table>
<thead>
<tr>
<th>Age group</th>
<th>MIS-C</th>
<th>Severe COVID 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mostly older children >6yrs Post omicron increase younger patients with MIS-C</td>
<td>Younger infants</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Underlying pathology</th>
<th>MIS-C</th>
<th>Severe COVID 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previously Healthy</td>
<td>Co morbid diseases</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical presentation</th>
<th>MIS-C</th>
<th>Severe COVID 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal symptoms – more severe</td>
<td>Gastro-intestinal symptoms – often milder</td>
<td></td>
</tr>
<tr>
<td>Mucocutaneous symptoms – more common</td>
<td>Cardiovascular abnormalities: Can have myocarditis – less frequent</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular abnormalities: More common Hypotension and shock</td>
<td>Respiratory symptoms – Present more often with absence of Cardiovascular disease</td>
<td></td>
</tr>
<tr>
<td>Severe Cardiac dysfunction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory symptoms – Present with cardiovascular disease</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratory findings</th>
<th>MIS-C</th>
<th>Severe COVID 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme inflammation</td>
<td>Mildly raised Inflammatory markers</td>
<td></td>
</tr>
<tr>
<td>White cell count: Raised Neutrophil count, mild lymphopaenia</td>
<td>White cell count: Lymphopaenia</td>
<td></td>
</tr>
<tr>
<td>Lower Platelet count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coagulopathy: more abnormal</td>
<td>Coagulopathy: might abnormal</td>
<td></td>
</tr>
<tr>
<td>Cardiac enzymes often higher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics and Outcomes of US Children and Adolescents With Multisystem Inflammatory Syndrome in Children (MIS-C) Compared With Severe Acute COVID-19 – L Feldstein et al JAMA 24/02/2021

Spectrum of MIS-C and Severe COVID 19

MIS-C ↔ Severe COVID 19
Agenda

1. Epidemiology of disease in South Africa
2. Severity of illness
3. Disease presentation
4. Severe COVID vs Multisystem inflammatory syndrome
5. Management
Principles of management

- It is a virus
- Basic management principles
<table>
<thead>
<tr>
<th>Supportive Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory illness</td>
</tr>
<tr>
<td>Admission for moderate to severe cases</td>
</tr>
<tr>
<td>Oxygen therapy – nasal prongs</td>
</tr>
<tr>
<td>β2 agonist if wheezing - given with spacer</td>
</tr>
<tr>
<td>Gastro-intestinal illness</td>
</tr>
<tr>
<td>Intravenous fluids</td>
</tr>
<tr>
<td>Continue normal feeds</td>
</tr>
<tr>
<td>Anti-emetics if needed</td>
</tr>
<tr>
<td>Neurological manifestation</td>
</tr>
<tr>
<td>Standard Care for seizures</td>
</tr>
<tr>
<td>Complex febrile seizures</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Fever – Paracetamol/Acetaminophen/Ibuprofen</td>
</tr>
</tbody>
</table>
Management of children and young persons with COVID-19

- No place for routine antibiotics
 - Indications for antibiotics
 - Except
 - If a secondary bacterial infection
 - Atypical bacterial infection is suspected
- Severe and critically ill patients transferred to a center with paediatric intensive care unit
- Remember atypical presentation of patients with MIS-C that may need earlier referral
Drug treatments for children and young persons with severe COVID-19

- Steroid
 - Patients that need high flow or ventilatory support
 - Dexamethasone
 - MIS-C
 - Hydrocortisone - early

- Immune modulation therapies
 - Intravenous immunoglobulins – MIS-C
 - Anti - IL-10 monoclonal/polyclonal antibodies
Thank you for your attention
Acknowledgements

- Waasila Jassat
- Ute Feucht
- Ameena Goga
- Maria Karsas
- Paediatric Department SBAH
 - All Consultants, registrars, interns
 - Nursing staff
- Health care workers at public sector hospitals in Tshwane District: L Chumba, N Singh, M Maharaj, J Talma, E Sihlangu, T Muzinga, D Kutumela, J Mokwena, V Zulu, LFaul, R Ramlall, M Heystek
- Tshwane District management team
- Tshwane District Clinical Specialist Team members R Skhosana, A Kruger, M Tshukudu, T Monyane, L Komane, M van der Westhuizen, M Moshime-Shabangu
- DATCOV team at the NICD
- SAMRC research team
- Laboratory team:
 - Zoonotic arbo and Respiratory virus research group
 - Department of Medical Virology, University of Pretoria
 - National Health Laboratory Service Tshwane Academic division Department Medical Virology
References

1. South African Department of Health COVID 19 dashboard
6. Up to date – Management of children with COVID 19 disease