

1

DAPSONE TABLETS (DAPSONI COMPRESSI)

2

3 **Draft proposal for revision in *The International Pharmacopoeia***

4 (16 December 2025)

5 **DRAFT FOR COMMENTS**

6

Please submit your comments through the online platform, PleaseReview™

<https://who.pleasereview.net/Main/Default.aspx?action=loaddocument&reviewid=373>

If not registered or included in our mailing list, kindly submit your request with your full name, email address and organization/affiliation to nsp@who.int.

For any technical questions, you may contact **Dr Herbert Schmidt**, Technical Officer, Norms and Standards for Pharmaceuticals, Technical Standards and Specifications (schmidth@who.int), with a copy to **Ms Sinéad Jones** (jonessi@who.int, nsp@who.int).

Comments should be submitted through the online platform on or by **16 February 2026**. Please note that only comments received by this deadline will be considered for the preparation of this document.

Our working documents are sent out electronically and uploaded into PleaseReview™. The working documents are also placed on the WHO Medicines website (<https://www.who.int/teams/health-product-and-policy-standards/standards-and-specifications/pharmaceuticals/working-documents-public-consultation>) under the “Working documents in public consultation”.

7

8 © World Health Organization 2025

9

10 All rights reserved.

11

12 This is a draft. The content of this document is not final, and the text may be subject to revisions before publication. The
13 document may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in
14 whole, in any form or by any means without the permission of the World Health Organization.

15

16 Please send any request for permission to: Norms and Standards for Pharmaceuticals, Technical Standards and Specifications,
17 Department of Health Products Policy and Standards, World Health Organization, CH-1211 Geneva 27, Switzerland, email:
18 nsp@who.int.

19

20 The designations employed and the presentation of the material in this draft do not imply the expression of any opinion
21 whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or
22 of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate
23 border lines for which there may not yet be full agreement.

24

25 The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or
26 recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and
27 omissions excepted, the names of proprietary products are distinguished by initial capital letters.

28

29 All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft.

30

31 However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility
32 for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for
33 damages arising from its use.

34

35 This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.

36

37 **SCHEDULE FOR DRAFT WORKING DOCUMENT QAS/23.920**

38 **DAPSONE TABLETS (DAPSONI COMPRESSI)**

39

Description	Date
Drafting of the monograph based on information found in the public domain and other pharmacopoeias.	January 2023
Discussion at the Consultation on Quality Control and Pharmacopoeial Specifications.	April 2023
Discussion at the Consultation on Quality Control and Pharmacopoeial Specifications.	May 2024
Discussion at the Consultation on Quality Control and Pharmacopoeial Specifications	April 2025
Discussion at the 59 th meeting of the WHO Expert Committee on Specifications for Pharmaceutical Preparations	October 2025
Public consultation	December 2025 – February 2026
Further follow-up action as required.	

40

41 *[Note from the Secretariat. It is intended to revise the monograph on Dapsone*
42 *tablets. The revision is based on information found in the public domain and in other*
43 *pharmacopoeias and submitted by a manufacturer.*

44 *Changes are indicated by insert or replace.*]

45

46

DAPSONE TABLETS (DAPSONI COMPRESSI)

47 **Category.** Antileprosy medicine.

48 **Additional information.** Strengths in the current WHO Model list of essential
49 medicines: 25 mg, 50 mg, 100 mg. Strengths in the current WHO Model list of
50 essential medicines for children: 25 mg, 50 mg, 100 mg.

51 **The tablets may be coloured.**

52 **Requirements**

53 Comply with the monograph for *Tablets*.

54 Dapsone tablets contain not less than 90.0 93.0% and not more than 110.0 107.0% of
55 the amount of $C_{12}H_{12}N_2O_2S$ stated on the label.

56 **Identity tests**

57 • Either test A, or any two of tests B, C and D, may be applied. Either tests A and
58 B or tests B and C may be applied.

59 A. Carry out the test as described under 1.7 Spectrophotometry in the infrared
60 region. Transfer a quantity of finely powdered Tablets, equivalent to 100 mg of
61 dapsone, to a suitable container, add 5 mL of acetone R, sonicate for 5 min,
62 filter, and evaporate the filtrate to dryness. Dry this residue at 105 °C for 1 h.
63 The infrared absorption spectrum is concordant with the spectrum obtained
64 from dapsone RS or with the reference spectrum of dapsone.

65 B. To a quantity of the powdered tablets, nominally containing 0.1 g of Dapsone,
66 add 50 mL of methanol R, shake and filter. Dilute 0.5 mL of the filtrate to 200
67 mL with methanol R. The absorption spectrum of the resulting solution, when
68 observed between 230 nm and 350 nm, exhibits maxima at about 260 nm and

69 295 nm; the absorbances of a 1 cm layer at these maximum wavelengths are
70 about 0.36 and 0.6, respectively.

71 Alternatively, in combination with identity test B, where a diode array detector
72 is available, record the UV spectra of the principal peaks in the chromatograms
73 with a diode array detector in the range of 230 nm to 350 nm. The UV
74 spectrum of the principal peak in the chromatogram obtained with solution (1)
75 corresponds to the UV spectrum of the peak due to dapsoner in the
76 chromatogram obtained with solution (2).

77 C. Carry out the test as described under 1.14.1, Chromatography, High-
78 performance liquid chromatography using the conditions and solutions given
79 under Assay. The retention time of the principal peak obtained with solution
80 (1) corresponds to the retention time of the peak due to dapsoner in the
81 chromatogram obtained with solution (3)

82 D. Carry out the test as described under 1.14.1 Chromatography, Thin-layer
83 chromatography, using silica gel R6 as the coating substance and a freshly
84 prepared mixture of dichloromethane R, methanol R and ammonia (~260 g/L)
85 TS (90:10:2 V/V/V) as the mobile phase. Apply separately to the plate 5 µL of
86 each of the following 2 solutions: for solution (A), dissolve a quantity of the
87 powdered tablets, nominally containing 10 mg of dapsoner in 10 mL of
88 methanol R, centrifuge for 10 minutes and use the supernatant liquid. For
89 solution (B), use a solution containing 1 mg of dapsoner RS per mL of methanol
90 R. Develop the plate. After removing the plate from the chromatographic
91 chamber, allow it to dry in air or in a current of air. Examine the chromatogram
92 under ultraviolet light (254 nm and 365 nm). The principal spot in the
93 chromatogram obtained with solution (A) corresponds in position, appearance
94 and intensity with the spot due to dapsoner in the chromatogram obtained with
95 solution (B).

96 B. See the test described below under "Related substances". The principal spot
97 obtained with solution A corresponds in position, appearance and intensity with
98 that obtained with solution B.

99 C. Shake a quantity of the powdered tablets equivalent to 0.05 g of Dapsone with
100 5 mL of warm acetone R, filter, evaporate the filtrate and dry at 105 °C for 30
101 minutes. Dissolve the residue in 2 mL of hydrochloric acid (~70 g/l) TS, cool
102 in ice and add 4 mL of sodium nitrite (10 g/l) TS. Allow to stand for 2 minutes
103 then pour the mixture into 2 mL of freshly prepared 2-naphthol TS1 containing
104 1 g of sodium acetate R; an orange red precipitate is produced.

105 **Related substances.** Carry out the test as described under 1.14.1 Chromatography,
106 High-performance liquid chromatography, using a stainless steel column (25 cm x 4.6
107 mm) packed with end-capped particles of silica gel, the surface of which has been
108 modified with chemically-bonded octadecylsilyl groups (5 µm)¹.

109 Use the following conditions for gradient elution:

110 • Mobile phase A: water R.
111 • Mobile phase B: acetonitrile R.

<u>Time</u> <u>(Minutes)</u>	<u>Mobile phase A</u> <u>(% v/v)</u>	<u>Mobile phase B</u> <u>(% v/v)</u>	<u>Comments</u>
0 - 2	80	20	isocratic
2 - 17	80 to 75	20 to 25	linear gradient
17 - 40	75 to 20	25 to 80	linear gradient
40 - 41	20 to 80	80 to 20	return to initial composition
41 - 50	80	20	re-equilibration

112 Operate with a flow rate of 1.0 mL per minute. As a detector, use an ultraviolet
113 spectrophotometer set at a wavelength of 254 nm.

¹ An Thermo BDS Hypersil C18Column was found suitable.

114 Prepare the following solutions using as the diluent a mixture of 50 volumes of water
115 R and 50 volumes of acetonitrile R. For solution (1), transfer a quantity of the
116 powdered tablets, nominally containing 100 mg of dapsone into a 100 mL volumetric
117 flask, add 70 mL of methanol R, sonicate for 15 minutes at 35 °C with intermittent
118 shaking, allow to cool to room temperature and add methanol R to volume. Dilute 5.0
119 mL of the supernatant to 25.0 mL with diluent and filter. For solution (2), dilute 1.0
120 mL of the solution (1) to 100.0 mL with diluent. For solution (3), dilute 2.0 mL to
121 20.0 mL. For solution (4), dissolve 2 mg of the test substance, 2 mg of 4-(4-
122 aminobenzene-1-sulfonyl)phenol R (impurity A), 2 mg of 4-(benzenesulfonyl)aniline
123 R (impurity B) and 2 mg of 4,4'-[oxybis[(4,1-phenylene)sulfonyl]]dianiline R
124 (impurity C) and dilute to 50 mL. Dilute 1 mL of this solution to 10 mL.

125 Inject 20 µL each of solutions (1), (2), (3) and (4).

126 Use the chromatogram obtained with solution (4) to identify the peaks due to the
127 impurities A, B and C. The impurities, if present, are eluted at the following relative
128 retentions with reference to dapsone (retention time about 10 minutes): impurity I
129 about 0.15; impurity A about 1.2; impurity G about 1.45; impurity D about 2.2;
130 impurity B about 2.4; impurity E about 3.0; impurity C about 3.2; impurity F about
131 3.45; and impurity H about 3.8.

132 The test is not valid unless, in the chromatogram obtained with solution (4), the
133 resolution between the peaks due to dapsone and impurity A is at least 5.0. Also, the
134 test is not valid unless, in the chromatogram obtained with solution (3), the peak due
135 to dapsone is detected with a signal-to-noise ratio of at least 10.

136 In the chromatogram obtained with solution (1):

137 • the area of any peak corresponding to impurity B, when multiplied by a
138 correction factor of 2.7, is not greater than 0.4 times the area of the peak due to
139 dapsone in the chromatogram obtained with solution (2) (0.4 %);

140 • the area of any peak corresponding to impurity A, when multiplied by a
141 correction factor of 1.9, is not greater than 0.3 times the area of the peak due to
142 dapsone in the chromatogram obtained with solution (2) (0.3 %);
143 • the area of any peak corresponding to impurity C, when multiplied by a
144 correction factor of 1.7, is not greater than 0.3 times the area of the peak due to
145 dapsone in the chromatogram obtained with solution (2) (0.3 %);
146 • the area of any other impurity peak is not greater than 0.2 times the area of the
147 peak due to dapsone in the chromatogram obtained with solution (2) (0.2 %).
148 • The sum of the areas of all impurity peaks, including the corrected areas of any
149 peaks corresponding to impurities A, B and C is not greater than 1.5 times the
150 area of the peak due to dapsone in the chromatogram obtained with solution (2)
151 (1.5%). Disregard any peak with an area less than the area of the peak due to
152 dapsone in the chromatogram in the chromatogram obtained with solution (3)
153 (0.1%).

154 Carry out the test as described under 1.14.1 Chromatography, Thin layer
155 chromatography using silica gel R1 as the coating substance and a mixture of 8
156 volumes of toluene R and 4 volumes of acetone R as the mobile phase. Apply
157 separately to the plate 1 µl of each of the following two solutions. For solution (A)
158 shake a quantity of the powdered tablets equivalent to 10 mg of Dapsone with 10 mL
159 of methanol R, filter and use the clear filtrate. For solution (B) dissolve 5 mg of
160 dapsone RS in 5 mL of methanol R. Further apply 10 µl of the following three
161 solutions. For solution (C) shake a quantity of the powdered tablets equivalent to 0.1 g
162 of Dapsone with 10 mL of methanol R, filter and use the clear filtrate. For solution
163 (D) dilute 1 mL of solution C to 100 mL with methanol R and for solution (E) dilute 1
164 mL of solution D to 5 mL with methanol R. After removing the plate from the
165 chromatographic chamber allow it to dry in air and spray first with sodium
166 nitrite/hydrochloric acid TS and then, while still damp, with N (1
167 naphthyl)ethylenediamine hydrochloride (1 g/l) TS, and examine the chromatogram in
168 daylight.

169 ~~Any spot obtained with solution C, other than the principal spot, is not more intense~~
170 ~~than that obtained with solution D and not more than two such spots are more intense~~
171 ~~than that obtained with solution E.~~

172 **Dissolution.** Carry out the test described under *5.5 Dissolution test for oral dosage forms*, using as the dissolution medium 1000 mL of hydrochloric acid (~4 g/L) TS and rotating the basket at 100 revolutions per minute. At 45 minutes, withdraw a sample of 10 mL of the medium through an in-line filter. Allow the filtered sample to cool to room temperature.

177 If necessary, dilute a suitable volume of the filtrate with dissolution medium to obtain a solution nominally containing 0.025 mg of dapsone per mL. Measure the absorbance as described under *1.6 Spectrophotometry in the visible and ultraviolet regions* of the resulting solution in a cuvette with an optical pathlength of 10 mm at about 288 nm, using the dissolution medium as the blank.

182 For each of the tablets tested, calculate the total amount of dapsone ($C_{12}H_{12}N_2O_2S$) in the medium using the absorptivity value of 41.5 ($A_{1\text{cm}}^{1\%} = 415$) for dapsone.

184 Evaluate the results as described under *5.5 Dissolution test for solid oral dosage forms, Acceptance criteria*. The amount of dapsone released is not less than 75 % (Q) of the amount declared on the label.

187 **[Note from the Secretariat. It is intended to confirm the absorptivity value of dapsone during the establishment of RS]**

189 **Assay.** Carry out the test as described under *1.14.1 Chromatography, High-performance liquid chromatography*, using a stainless steel column (25 cm x 4.6 mm) packed with end-capped particles of silica gel, the surface of which has been modified with chemically-bonded octadecylsilyl groups (5 μm)².

² An Thermo BDS Hypersil C18Column was found suitable.

193 Use the following conditions for gradient elution:

194 • Mobile phase A: water R.

195 • Mobile phase B: acetonitrile R.

Time (minutes)	Mobile phase A (% v/v)	Mobile phase B (% v/v)	Comments
0 - 2	80	20	isocratic
2 - 11	80 to 75	20 to 25	linear gradient
11 - 16	75 to 10	25 to 90	linear gradient
16 - 20	10	90	isocratic
20 - 21	10 to 80	90 to 20	return to initial composition
21 - 25	80	20	re-equilibration

196 Operate with a flow rate of 1.0 mL per minute. As a detector, use an ultraviolet spectrophotometer set at a wavelength of 254 nm.

198 Prepare the following solutions using as the diluent a mixture of 50 volumes of water
199 R and 50 volumes of acetonitrile R.

200 For solution (1), weigh and powder 20 tablets. Transfer a quantity of the powdered
201 tablets, nominally containing 50.0 mg of dapsone to a 200 mL volumetric flask. Add
202 170 mL of methanol R, sonicate for 15 minutes at 35 °C with intermittent shaking,
203 allow to cool to room temperature and add methanol R to volume. Dilute 5.0 mL of
204 the supernatant to 50.0 mL with diluent and filter. For solution (2), dissolve 50.0 mg
205 of dapsone RS in 150 mL of methanol R and dilute to 200.0 mL with the same
206 solvent. Dilute 5.0 mL of this solution to 50.0 mL with diluent.

207 Inject 20 µL each of solutions (1) and (2).

208 Measure the areas of the peaks corresponding to dapsonc obtained in the
209 chromatograms of solutions (1) and (2) and calculate the percentage content of
210 dapsone ($C_{12}H_{12}N_2O_2S$) in the tablets, using the declared content of $C_{12}H_{12}N_2O_2S$ in
211 dapsone RS.

212 Weigh and powder 20 tablets. Dissolve a quantity of the powder equivalent to about
213 0.25 g of Dapsone, accurately weighed, in a mixture of 15 mL of water and 15 mL of
214 hydrochloric acid (~70 g/l) TS. Carry out the assay as described under 2.7 Nitrite
215 *titration*, titrating with sodium nitrite (0.1 mol/l) VS.

216 Each mL of sodium nitrite (0.1 mol/l) VS is equivalent to 12.42 mg of $C_{12}H_{12}N_2O_2S$.

217 **Impurities.** The impurities limited by the requirements of this monograph include
218 those listed in the monographs on Dapsone

219

220 **Reagents to be established**

221 **4-(4-Aminobenzene-1-sulfonyl)phenol R**

222 $C_{12}H_{11}NO_3S$.

223 Molecular weight. 249.3

224 Description. Grey or light brown powder, hygroscopic, slightly soluble in methanol.

225 Melting point. About 138 °C.

226 **4-(Benzenesulfonyl)aniline R**

227 $C_{12}H_{11}NO_2S$.

228 Molecular weight. 233.3

229 Description. Light brown powder.

230 Melting point. About 176 °C.

231 **4,4'-[Oxybis[(4,1-phenylene)sulfonyl]]dianiline R**

232 C₂₄H₂₀N₂O₅S₂.

233 Molecular weight. 480.6

234 Description. Light brown powder.

235 Melting point. About 220 °C.

236

237 **Reference substance described**

238 **Dapsone RS**

239 ICRS already established, intended uses to be added

240

Draft for Comments