Public call for data on targeted Next-Generation Sequencing solutions for detection of drug resistance among people diagnosed with tuberculosis

Annex: Data requirements

1. Research questions
 - What is the diagnostic accuracy of targeted next-generation sequencing solutions\(^1\) for detection of drug resistance among individuals diagnosed with bacteriologically confirmed\(^2\) pulmonary TB disease, compared to phenotypic drug sensitivity testing (DST)?
 - What is the impact of targeted next-generation sequencing solutions for detection of TB drug resistance, compared to phenotypic DST, on key patient-important outcomes (see #5 for full list)?
 - What are the costs of implementing targeted next-generation sequencing solutions for detection of TB drug resistance? Are targeted next-generation sequencing solutions for detection of TB drug resistance cost-effective?
 - What are user/key stakeholder views and perspectives on the use of targeted next-generation sequencing solutions for detection of TB drug resistance?

2. Study populations
 All individuals diagnosed with bacteriologically confirmed pulmonary TB disease.
 Subpopulations:
 - Rifampicin-susceptible patients
 - Rifampicin-resistant patients
 - New TB patients
 - Previously treated TB patients
 - Patients failing a TB regimen
 - Children and adolescents <18;
 - Adults ≥18 years;
 - People living with HIV
 - CD4≥200
 - CD4<200
 - Other vulnerable groups (e.g. malnourished, DM)
 - mWRD M.TB-positive semiquantitative result (High/Moderate)
 - mWRD M.TB-positive semiquantitative result (Low/Very Low/Trace)

3. Interventions
 Targeted next-generation sequencing (tNGS) solutions for detection of drug resistance\(^1\) including the following:
 - Deeplex Myc TB
 - Deepchek Assay
 - NanoTB drug resistance assay

\(^1\) Solution refers to a locked design product intended for commercial use that includes DNA extraction, targeted gene amplification, sequencing of amplicons, bioinformatic analysis and a final report that provides an interpreted sequencing result classifying the result as either resistant, susceptible or uncertain

\(^2\) Confirmed positive by mWRD test, LF LAM, sputum smear microscopy, or TB culture (solid or liquid)
- Other tNGS solutions

Types of specimens:
- Sputum specimens
- Non-sputum specimens
- Culture isolates

4. Comparators
- Primary reference standard: Microbiological reference standard (MRS): phenotypic DST performed on liquid or solid culture from a respiratory specimen;
- Secondary reference standard: Composite reference standard (CRS): phenotypic DST performed on liquid or solid culture from a respiratory specimen plus whole genome sequencing

5. Outcomes

Diagnostic accuracy outcomes:
- Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and indeterminate rates of tNGS solutions to detect resistance to each of the following drugs:
 - Rifampicin
 - Isoniazid
 - Fluoroquinolones (Levofloxacin, Moxifloxacin)
 - Bedaquiline
 - Pyrazinamide
 - Linezolid
 - Pretomanid
 - Delamanid
 - Clofazimine
 - Amikacin
 - Ethambutol
 - Ethionamide
 - Prothionamide
 - Streptomycin

Effectiveness outcomes
- Time to results
- Time to appropriate treatment initiation (for new or previously treated patients or retreatment episode)
- Loss to follow-up
- Treatment success (cure + completion)
- Treatment failure
- Adverse events reported
- Mortality
- Emergence of incident drug resistance

Other outcomes
- Costs and cost-effectiveness
- Key user/stakeholder views and perspectives on feasibility, acceptability, and potential impact on equity of TNGS solutions