

Prof Kate Seib

Key issues that highlight the need for a gonorrhoea vaccine

- > 82 million cases per year
- Majority of infections have no/mild symptoms
- Infection can have significant, long term health consequences
- No natural immunity after infection and reinfection is common
- May become untreatable due to antibiotic resistance
- Prevention by vaccination is essential for long term control of gonorrhoea

Key Target

Indicator	Baseline –	Targets -	Targets -
	2020°	2025	2030
Number of new cases of gonorrhea among people 15–49 years old per year	82.3 million	65.8 million	8.23 million

90% reduction in the number of new cases of gonorrhoea by 2030

Global health sector strategies on, respectively, HIV, viral hepatitis and sexually transmitted infections for the period 2022-2030

Action 103: New vaccines for sexually transmitted infections.

Activities to facilitate vaccine development

- Preferred product characteristics (PPC)
 - Promote development of vaccines with optimal effectiveness and suitability, particularly in LMIC
 - Maximise global impact
- Vaccine value profile (VVP)
 - Provide a high-level assessment of current data to inform the potential public health, economic and societal value of a vaccine

https://www.who.int/publications/i/item/9789240039827

Obstacles to gonorrhoea vaccine development

- Antigenically variable bacteria
 - > Selection of broadly protective antigens is challenging
 - > Multicomponent vaccine needed
- Humans are only natural host
 - > Difficult to fully test vaccine candidates in animal models that lack human specific receptors and molecules
- No / limited protective immunity after infection
 - > Limited data on immune protection to guide vaccine development
 - > No correlate of protection
- Gonorrhoea is highly adapted to evade / avoid immune system

 Highly variable surface structures both between strains and within strains over the course of infection

Sequence

Expression

Evades / inhibits immune responses

- Mimics host structures
 - Lipooligosaccharide (LOS) sialylation
- Recruits complement inhibitors
 - blocks alternative and classical complement pathways

Evades / inhibits immune responses

- Suppresses T cell proliferation and activation of adaptive immune responses
- Promotes survival in macrophages and neutrophils
- Th1/Th2 responses are blunted pro-inflammatory Th17 responses dominate

- Antibodies present to gonorrhoea LOS/proteins in sera, seminal plasma, cervical secretions following infection
- Pre-existing antibodies to gonorrhoea LOS/proteins are common
 - Cross-reaction to nasal carriage of N. meningitidis or commensal Neisseria?
- Some association between antibodies to
 - LOS and resistance to infection in human re-challenge model
 - Opa and reduced relative risk of salpingitis in sex workers in Kenya
- Cellular immune responses poorly understood
- > A vaccine needs to induce a non-native immune response

Preclinical vaccine development

Preclinical vaccine evaluation

Griffith UNIVERSITY Institute for Glycomics

- In vitro efficacy based on
 - Immunogenicity and surface-binding of antibodies (ELISA titres)
 - Bactericidal or opsonophagocytic activity (SBA / OPA titres)
 - Inhibition/neutralisation of target function

Preclinical vaccine evaluation

Griffith UNIVERSITY Institute for Glycomics

- In vitro efficacy based on
 - Immunogenicity and surface-binding of antibodies (ELISA titres)
 - Bactericidal or opsonophagocytic activity (SBA / OPA titres)
 - Inhibition of target function
- In vivo efficacy
 - female mouse genital tract infection model
 - Does not replicate infection and transmission

Clinical vaccine evaluation

 Investigation of crossprotection by a meningococcal vaccine

Meningococcal 4CMenB vaccine

Discovery and exploratory stage

Preclinical stage

Phase I studies

Phase II studies

Phase III trials

Regulatory approval & introduction

GMMA = generalized modules for

membrane antigens

Gonorrhoea GMMA

NCT05630859

Vaccine trials for gonorrhoea

Evidence for MenB vaccine cross protection

OMVs

- Neisseria gonorrhoeae & Neisseria meningitidis
 - closely related bacteria
 - share most genes/ virulence factors
- Have had distinct vaccine development pathways
 - Outer membrane vesicle (OMV) vaccines to serogroup B (MenB)

Evidence for MenB vaccine cross protection

Study	Location	Vaccine	Outcome	
	Cuba ¹	VA-MENGOC-BC		
	Norway ²	MenBvac	30 - 50%	
Observational,	New Zealand ³	MeNZB		
case control, cohort	Canada ⁴		effectiveness against gonorrhoea	
	USA ⁵			
	Australia ⁶	4CMenB		
Randomised control trial	France ⁷			

¹Pérez et al., 2009, Ochoa Azze, 2019, Reyes Díaz et al., 2021. ²Whelan et al., 2016. ³Petousis-Harris et al., 2017. ⁴Longtin et al., 2017. ⁵Abara et al., 2022. ⁶Wang et al., 2022. ⁷Molina et al. 2023 NCT04597424.

Potential mechanism of action for MenB vaccines against *N. gonorrhoeae* (Ng)

- 4CMenB NHBA and OMV antigens have homologues in Ng ¹⁻³
- Sera from vaccinated humans cross-reacts with Ng ¹
- 4CMenB immunized mice ⁴
 - accelerated clearance and reduced Ng bacterial burden in upper and lower reproductive tract
 - 4-fold increase in serum bactericidal titers
 - serum IgG and vaginal IgA & IgG cross-reacts with Ng
 - antibodies recognize Ng PilQ*, BamA, MtrE, NHBA*, PorB, and Opa (*also shown for human serum)

Ongoing clinical trials with 4CMenB

Trial number	Study type	Study name	Location, numbers
ACTRN126190 01478101	RCT efficacy Immunogenicity	MenGO: Does the licensed meningococcal vaccine Bexsero® provide cross- protection against gonorrhoea?	Australia 130
NCT04415424	RCT efficacy Immunogenicity	GoGoVax: Efficacy study of 4CMenB Bexsero® to prevent gonorrhoea infection in gay and bisexual men	Australia 730
NCT04350138	RCT efficacy	Safety and efficacy study of meningococcal group B vaccine rMenB+OMV NZ Bexsero to prevent gonococcal infection	USA, Thailand 2,200
NCT05294588	RCT challenge	Efficacy of Immunization With 4C-MenB in Preventing Experimental Urethral Infection With Neisseria Gonorrhoeae	USA 140
NCT04722003	Immunogenicity	Mucosal immunity against <i>Neisseria gonorrhoeae</i> after 4CMenB vaccination	USA 50
NCT04094883	Immunogenicity	Study to assess gonorrhoeae immune responses induced by a N. meningitidis vaccine 4CMenB	USA 15
NCT04297436	Immunogenicity	Gonococcal vaccine study in key populations in Kenya BexKPK	Kenya 50
NCT04398849	Observational prospective cohort	Immunisation for adolescents against serious communicable diseases B Part of it NT	Australia 7,100

Source: https://clinicaltrials.gov https://www.anzctr.org.au/

- Several 4CMenB clinical trials are investigating immune responses¹⁻⁵
- Humoral immune responses
 - Antibody levels Serum and mucosal IgG, IgA, IgM specific for recombinant protein antigens or OMVs
 - Antibody function Serum bactericidal activity (SBA), opsonophagocytic killing (OPK), function neutralising
- Cellular immune responses
 - Peripheral blood mononuclear cells (PBMC) collected
 - Antigen-specific IFN secreting T cells and memory B cells investigated

- Controlled Human Infection Model (CHIM)
 - Experimental urethral infection in 18-35 year old males symptomatic urethritis seen in 80-90% of participants within 5 days
 - Participants will receive 2 doses of vaccine (4CMenB or comparator vaccine) then intraurethral challenge with Ng

Summary

- Many obstacles to gonorrhoea vaccine development
- Several promising vaccine candidates in preclinical development
- 2 vaccines undergoing clinical evaluation
 - hopefully show protection
 - help identify correlates of protections

Feasibility of mRNA gonorrhoea vaccine?

