Flaviviruses – key immunological considerations for vaccine development

Alan D.T. Barrett
Department of Pathology and
Sealy Institute for Vaccine Sciences
University of Texas Medical Branch
Galveston TX

abarrett@utmb.edu
Flaviviruses

- Family *Flaviviridae*
- Four genera: *Flavivirus, Pegivirus, Pestivirus, Hepacivirus*
- *Flavivirus* genus contains approximately 70 viruses
- “Arboviruses”
 - 50% Mosquito-borne
 - 25% tick-borne
 - 25% non-vector-borne
- Yellow fever virus is the prototypical member of the *Flavivirus* genus
Current flaviviruses of major medical importance

Mosquito-borne
- Dengue viruses (DENV)
- Japanese encephalitis virus (JEV)
- West Nile virus (WNV)
- Yellow fever virus (YFV)
- Zika virus (ZIKV)

Tick-borne
- Tick-borne encephalitis virus (TBEV)
- Omsk hemorrhagic fever virus (OHFV)
- Kyasanur Forest disease virus (KFDV)
Manifestations of flavivirus infection

Febrile illnesses
DENV (dengue fever)

Encephalitic disease
JEV
TBEV

Hemorrhagic fever
YFV
DENV (dengue hemorrhagic fever)
OHFV
KFDV
Dengue
Flavivirus serologic-/genetic-groups

Mammalian tick-borne
Seabird tick-borne
Yellow fever
Dengue
Spondweni
Aroa
Japanese encephalitis
Ntaya
Kokobera
Rio Bravo
Modoc
Modoc
Entebbe bat

Dengue-1
Dengue-2
Dengue-3
Dengue-4
The complexity of developing a dengue vaccine

Need to develop not just one immunogen but four immunogens that will give a balanced immune response whereby a protective immune response is induced against all four viruses simultaneously, i.e., the vaccine has to be tetravalent.

Mechanism of protective immunity against DEN infection is poorly understood. It is assumed that neutralizing antibodies are the main effector of protection against DEN infection.

Lack of a suitable animal model with which to evaluate candidate vaccines. This severely hindered progress on identifying determinants of attenuation, virulence and immunogenicity of DEN viruses that can be applied to vaccine development.

Immune enhancement, including antibody dependent enhancement.

Interference between vaccine components
Antibody dependent enhancement (ADE)
Model of antibody-dependent enhancement (ADE) of dengue virus (DENV) replication and disease.

DENV

Heterotypic antibody from previous infection

Heterotypic antibody binds virus but does not neutralize

Antibody-antigen complex binds to FcγR

FcγR

Monocyte

Increased access to FcγR-bearing cells leads to increased virus load and disease

Note: DENV replicates poorly in FcγR-bearing cells in absence of heterotypic antibody

Antibody-virus interactions on monocytes/macrophages

Antibody concentration

Fold enhancement

Enhancement

Neutralization

PRNT$_{50}$
Enhancing antibodies associated with disease severity

- What are the role(s) of humoral immunity after vaccination in protecting/decreasing the severity of dengue disease?

- Evidence that wild-type DEN infection after Dengvaxia live attenuated vaccine vaccination can lead to increased disease in dengue immunes

- Broadly cross-reactive dengue neutralizing antibodies wane and non-neutralizing antibodies persist.

T cells associated with disease severity?
Interference?

• Monovalent DEN vaccines induce good neutralizing antibody titers.

• Live attenuated vaccine tetravalent formulations do not induce the same neutralization titers as the four individual monovalent vaccines.

• One or more components give good neutralization titers while one or more components give reduced neutralization titers compared to the monovalent vaccine.

• This is termed interference. The mechanism is unknown.

• BUT we do not know what level of neutralizing antibodies is protective…. So reduced neutralization titers may still be protective.
Do other flaviviruses mediate ADE?

• Maybe.

• All flavivirus sera, even yellow fever 17D vaccine, will mediate ADE in cell culture

• Multiple animal models for different flaviviruses show ADE… but does it happen in natural infections?

• Some evidence that ZIKV infection induces antibodies that mediate ADE of subsequent DENV infection
Current Licensed Flavivirus Vaccines

- Dengue
- Kyasanur Forest disease
- Japanese encephalitis
- Tick-borne encephalitis
- Yellow fever

No licensed vaccines

- West Nile
- Zika

- No antiviral agents available for any flavivirus disease
Licensed flavivirus vaccines

• Dengue
 ➢ recombinant live attenuated

• Japanese encephalitis – boosters doses needed
 ➢ Recombinant live attenuated
 ➢ Empirically-derived live attenuated
 ➢ Inactivated

• Tick-borne encephalitis – boosters doses needed
 ➢ Inactivated

• Kyasanur Forest disease – boosters doses needed
 ➢ Inactivated

• Yellow fever
 ➢ Empirically-derived live attenuated – one dose gives life-long immunity

• Wesselsbron - veterinary
 ➢ Empirically-derived live attenuated

• West Nile – veterinary – booster doses needed
 ➢ Inactivated, canarypoxvirus vector
Mechanism of protective immunity of licensed flavivirus vaccines in humans is poorly understood

............. so we tend to use neutralizing antibodies as a surrogate of protection
Surrogate of protection for licensed flavivirus vaccines

<table>
<thead>
<tr>
<th>Flavivirus</th>
<th>Live, subunit or inactivated?</th>
<th>Serotypes (Genotypes)</th>
<th>Test</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese encephalitis</td>
<td>Live and inactivated</td>
<td>1 (5)</td>
<td>PRNT/neutralization</td>
<td>1 in 10#</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>Live</td>
<td>1 (7)</td>
<td>Log neutralization index PRNT/neutralization</td>
<td>0.7+ 1 in 10-40^</td>
</tr>
<tr>
<td>Tick-borne encephalitis</td>
<td>Inactivated</td>
<td>1? (?)</td>
<td>PRNT/neutralization</td>
<td>1 in 10*</td>
</tr>
<tr>
<td>Dengue</td>
<td>Live</td>
<td>4 (4-6)</td>
<td>PRNT/neutralization?</td>
<td>??????</td>
</tr>
<tr>
<td>Zika</td>
<td>????</td>
<td>1 (2?)</td>
<td>“Neutralization”?</td>
<td>1 in 100 ?</td>
</tr>
</tbody>
</table>

* During the vaccine licensure procedure titers of $\geq 1:2$ were accepted as a correlate of immunity

Live SA14-14-2 had titer of 1 in 5 accepted initially

+ The level of antibody considered to be protective was an \log_{10} neutralization index of 0.7 originally based on studies in nonhuman primates

^ Seroprotective levels of neutralizing antibodies, measured by PRNT, have not been determined
Surrogate of protection for licensed flavivirus vaccines

<table>
<thead>
<tr>
<th>Flavivirus</th>
<th>Live, subunit or inactivated?</th>
<th>Serotypes (genotypes)</th>
<th>Test</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese encephalitis</td>
<td>a. Empirical live attenuated</td>
<td>1</td>
<td>PRNT/neutralization</td>
<td>1 in 10</td>
</tr>
<tr>
<td></td>
<td>b. Recombinant chimeric live</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>attenuated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Inactivated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow fever</td>
<td>Live</td>
<td>1</td>
<td>Log neutralization index PRNT/neutralization</td>
<td>0.7+ 1 in 10-50^</td>
</tr>
<tr>
<td>Tick-borne encephalitis</td>
<td>Inactivated</td>
<td>1?</td>
<td>PRNT/neutralization</td>
<td>1 in 10*</td>
</tr>
<tr>
<td>dengue</td>
<td>Live</td>
<td>4</td>
<td>PRNT/neutralization?</td>
<td>??????</td>
</tr>
<tr>
<td>Zika</td>
<td>????</td>
<td>1?</td>
<td>PRNT/neutralization?</td>
<td>??????</td>
</tr>
</tbody>
</table>
Overview of licensed flavivirus vaccines

- All vaccines monovalent (except dengue)
- Neutralizing antibodies are surrogate of protection
- Vaccines do not induce sterilizing immunity (?)
- Animal models based on mice and NHPs; NHP not good model for JEV/TBEV; only good model in some NHP species for YFV
- Vaccine-induced immunity not the same as that induced by natural infection
- Formalin inactivation “removes” some conformational epitopes on E protein (TBE vaccine)
Extrapolation to ZIKV
Zika is more complex than other flaviviruses as it has multiple tissue tropisms

Figure 1. ZIKV Tissue and Cell Tropism. Human studies and animal models (mice and non-human primates) have detected ZIKV in cells of the placenta, including Hofbauer cells (in vitro and in explanted human placental tissue), trophoblasts (mice, non-human primates...)

Jonathan J. Miner, Michael S. Diamond Zika virus pathogenesis and tissue tropism. Cell Host & Microbe 21; 134-142 (2017)
Surrogate of protection for licensed flavivirus vaccines

<table>
<thead>
<tr>
<th>Flavivirus</th>
<th>Live, subunit or inactivated?</th>
<th>Serotypes (Genotypes)</th>
<th>Test</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese encephalitis</td>
<td>Live and inactivated</td>
<td>1 (5)</td>
<td>PRNT/neutralization</td>
<td>1 in 10#</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>Live</td>
<td>1 (7)</td>
<td>Log neutralization index</td>
<td>0.7+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PRNT/neutralization</td>
<td>1 in 10-40^</td>
</tr>
<tr>
<td>Tick-borne encephalitis</td>
<td>Inactivated</td>
<td>1? (?)</td>
<td>PRNT/neutralization</td>
<td>1 in 10*</td>
</tr>
<tr>
<td>dengue</td>
<td>Live</td>
<td>4 (4-6)</td>
<td>PRNT/neutralization?</td>
<td>??????</td>
</tr>
<tr>
<td>Zika</td>
<td>Various</td>
<td>1 (2/3?)</td>
<td>“neutralization”?</td>
<td>1 in 100 ?</td>
</tr>
</tbody>
</table>

* During the vaccine licensure procedure titers of ≥ 1:2 were accepted as a correlate of immunity

Live SA14-14-2 had titer of 1 in 5 accepted initially

^ The level of antibody considered to be protective was an log\(_{10}\) neutralization index of 0.7 originally based on studies in nonhuman primates

^ Seroprotective levels of neutralizing antibodies, measured by PRNT, have not been determined
Neutralizing antibodies as a surrogate of protection for ZIKV?

(As expected) results qualitatively similar to that for licensed flavivirus vaccines
Diagnostics
Complexities of evaluating flavivirus immune responses

• Flavivirus serology is a “minefield” due to antigenic cross-reactivity. Hard to serologically identify an infection as due to a particular flavivirus unless the individual is flavivirus-naïve.

• Karl Johnson called flaviviruses the “Hall of Mirrors”

• Challenging to assess and interpret immunological data due to cross-reactivity.
Need standards!
Thank you very much!