Rift Valley Fever: key immunological considerations for vaccine development

Anita McElroy
April 2023

WHO/MPP mRNA Technology Transfer Programme,
Cape Town, Republic of South Africa
Rift Valley fever virus

First Identified in the 1930’s
- Rift Valley of Kenya

Livestock pathogen
- Cattle, goats, sheep

Transmission to humans
- Mosquito: arbovirus
- Contact with blood/bodily fluids of affected livestock

Blue= endemic
Green= seropositive reports

https://www.cdc.gov/vhf/rvf/index.html
Human disease manifestations

3-6 days post infection

7

Self-limiting febrile illness >80%

14

Retinitis

Encephalitis

Days post-initial symptom onset

21

28

Overall mortality: 1-3%
Up to 60% of adults seropositive in endemic areas

Heptatitis
What are the key viral antigenic targets for a RVFV mRNA vaccine?

- **Surface glycoproteins Gn/Gc**
 - Target of neutralizing antibodies

- Nucleocapsid protein and the polymerase protein
 - Inside the virion
 - Intracellularly expressed

- Non-structural proteins NSm and NSs
 - Virulence factors
RVFV potential immune correlates

• Neutralization- functional ability of antibodies to block virus entry
 • Antibodies are directed against the viral surface glycoprotein (mostly Gn)
 • Plaque reduction neutralization titer: PRNT
 • Focus reduction neutralization titer: FRNT
 • Expressed as 50% or 80% reduction

• ELISA- quantitation of antibodies that bind to viral proteins

• Cellular immune assays- measure the ability of T cells to recognize viral proteins
 • Measured by the release of cytokines from the T cells, e.g. IFN-γ
Natural infection induces sustained RVFV humoral response

- Two villages in Kenya
- Sampled 3 years apart
- 13 individuals who were positive in 2006 also sampled in 2009
- All with PRNT80 over 100
- One with increased titer between sampling suggesting re-exposure
Natural infection induces long-lived robust immune responses

- Two cohorts in Kenya
- Longitudinal data in 5 individuals
- High titer virus neutralizing antibodies
- IgG1 predominant
- Gn/Gc specific T cell function also noted
Immune correlates of protection

- Not clearly defined for humans
- Often associated with neutralizing antibodies
- Very little data on human cellular immunity and no established correlates for cellular immunity
- Pre-clinical data in mice, hamsters, rhesus macaques
 - Passive transfer experiments
 - PRNT or FRNT levels correlates with protection from challenge
Immune correlates of protection-mice

- Naïve mice administered different amounts of immune serum from mice vaccinated with live attenuated DelNSs RVFV
- FRNT80 measure in mice 24 hours after transfer then mice challenged with WT RVFV
- Note differences in protection based upon challenge dose
- GMT FRNT$_{80}$ \geq 74 was 100% protective at both challenge doses
Immune correlates of protection - NHPs

Table 2. Protection against RVFV infection by passive antiserum

<table>
<thead>
<tr>
<th>Experiment no.</th>
<th>Antibody dosea</th>
<th>Pre-infection PRNTb</th>
<th>Viremia<sup>c</sup></th>
<th>PRNT<sub>80</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Day</td>
<td>Day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N 1 2 3 4 5</td>
<td></td>
<td>21–25</td>
</tr>
<tr>
<td>5, 6<sup>d</sup></td>
<td>0</td>
<td><10</td>
<td>9</td>
<td>1.5 ± 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(<10)</td>
<td>4.0</td>
<td>1.4 ± 1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
<td>2.2 ± 1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td>1.2 ± 1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><0.7</td>
<td></td>
</tr>
<tr>
<td>5<sup>i</sup></td>
<td>0.5</td>
<td>63</td>
<td>3</td>
<td><0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(40–80)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5<sup>i</sup></td>
<td>0.1</td>
<td>20</td>
<td>3</td>
<td><0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6<sup>i</sup></td>
<td>0.05</td>
<td><10</td>
<td>4</td>
<td><0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(<10)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6<sup>i</sup></td>
<td>0.025</td>
<td><10</td>
<td>4</td>
<td><0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(<10)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2, 3<sup>i</sup></td>
<td>0</td>
<td><10</td>
<td>7</td>
<td>2.8 ± 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(<10)</td>
<td>5.6</td>
<td>2.1 ± 1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.9</td>
<td>0.9 ± 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.3</td>
<td>1.4 ± 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
<td>1.7 ± 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥160</td>
<td>(≥160)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(≥160)</td>
<td>(≥160)</td>
</tr>
</tbody>
</table>

a ml/kg given i.m. on day −2; serum PRNT₈₀ 1:2,560
b GMT ± SEM of log₁₀ PFU/ml serum; number viremic in parenthesis
c Geometric mean titer or GMT (range)
d s.c. inoculation with 6.0 log₁₀ PFU of ZH501 FRhL₁ spleen, serum, spleen₁ on day 0
e i.v. inoculation with 4.1–4.7 log₁₀ PFU of ZH501 FRhL₂ on day 0

Experimental Rift Valley fever in rhesus macaques

Disease Assessment and Pathology Divisions. U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, U.S.A.

Accepted December 12, 1987

- Rhesus macaques given 0.5 ml/kg down to 0.025 ml/kg of immune serum with a starting PRNT80 of 1:2560
- Challenged with WT ZH501
- Animals were protected from disease and had undetectable viremia following any dose of antibody
Does vaccination induce sufficient immunity? How long will vaccine mediated immunity last? Will boosters be necessary?

• Likely depends upon the platform and immunogen
• Lessons learned from prior vaccines
 • Formalin inactivated vaccine
 • MP-12- live attenuated
 • ChAdOx
 • DDVax (University of California Davis and Colorado State)-NHP data
 • RVFV-4S (Wageningen Bioveterinary Research)- NHP data
Formalin inactivated vaccine

- First vaccine tested in humans
- 1860 subjects
- 3 dose primary series (0,14,28d)
- Estimated that $\geq 1:40$ was protective
- Required boosting to maintain titers over time
MP-12- mutagenized live attenuated

- Single dose 1×10^5 PFU
- 62 subjects in Phase I and Phase II
- Estimated that $\geq 1:20$ was protective

18/19 seroconverted
8/9 maintained $\geq 1:20$ out to 5 years
ChAdOx1 RVFV vaccine

- Chimpanzee adenovirus vectors RVFV Gn/Gc
- Single dose $5 \times 10^9 - 5 \times 10^{10}$
- 15 subjects
- 12/15 seroconverted
- FRNT stable out to 3 months
- Phase I in Uganda recently completed
Summary- a RVFV mRNA vaccine?

• Gn/Gc most likely antigen
• Neutralizing antibodies are easy to measure and correlate well with protection in pre-clinical models
• Defining the true protective neutralization titer in human efficacy studies still needs to be done- tough given the sporadic nature of RVFV emergence in resource limited locations
 • WHO/CEPI sponsored international standards will help to coordinate this amongst groups
• Unknowns:
 • Will mRNA vaccination induce sufficient magnitude of neutralizing antibodies?
 • Will an mRNA vaccination induce durable immunity?
 • Will route or dose of exposure affect vaccine efficacy in humans?