The role of CHIM studies in accelerating malaria vaccine development: lessons learned from Kenya

Melissa Kapulu
WHO/MPP mRNA Technology Transfer Programme Meeting
19th April 2023
KEMRI-Wellcome Trust Research Programme
“Human infection studies (also known as human challenge trials and controlled human infection models) have the power to rapidly accelerate the development of much-needed vaccines and treatments……”

Purified cryopreserved sporozoites – PfSPZ Challenge

Modified from Kibwana, Kapulu, Bejon 2022

TBM: Transmission-blocking model
IBSM: Induced blood-stage model

Vaccine efficacy
Infectivity

<100
TBM
IBSM

<50
Infectivity

>100
Vaccine efficacy
Infectivity

>100
Vaccine efficacy

>200
Infectivity
Vaccine efficacy
TBM
IBSM

Purified cryopreserved sporozoites – PfSPZ Challenge

SANARIA

CHMI in Africa

KEMRI Wellcome Trust

Modified from Kibwana, Kapulu, Bejon 2022
Role of CHMI in Malaria Vaccine Development

Anti-Infection stage
- One Major Antigen
- Proof of principle efficacy in CHMI
- Progress onto clinical trials in target population
 - 100s of children

Anti-Disease stage
- Select antigen(s) by study of immunity
- Proof of principle efficacy in CHMI
- Progress onto clinical trials in target population
 - 100s of children

Anti-Transmission stage
- Several lead antigens
- Proof of principle efficacy in CHMI
- Progress onto clinical trials in target population
 - 100,000s of people
Rationale for Malaria Challenge Studies in Semi-Immune Adults?

- [Better] Understand Naturally Acquired Immunity
 - Correlates (surrogate markers) of immunity/infection

- Accelerate Vaccine Development
 - Target antigen discovery and development

- Test Efficacy of Vaccines (and/or drugs/treatments)
 - Correlates (surrogate markers) of protection
Controlled Human Malaria Infection Platform

<table>
<thead>
<tr>
<th>Study</th>
<th>Funder</th>
<th>No. of Volunteers</th>
<th>Aim</th>
<th>Status</th>
<th>Vaccine Antigen Discovery</th>
<th>Test Vaccines</th>
<th>Transmission Model</th>
<th>Blood-stage Model</th>
<th>Vivax (led by MORU, Thailand)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wellcome</td>
<td>161</td>
<td>Vaccine Efficacy</td>
<td>Completed (2021)</td>
<td>EDCTP</td>
<td>80</td>
<td>Ongoing</td>
<td>Ongoing</td>
<td>Ongoing</td>
</tr>
<tr>
<td></td>
<td>EDCTP</td>
<td>80</td>
<td>Test Blocking of Mosquito Infectivity</td>
<td>Ongoing</td>
<td>Test Sterile Immunity to Blood-Stages</td>
<td>Planned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wellcome</td>
<td>104</td>
<td>Vaccine Antigen Discovery</td>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wellcome</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wellcome</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plasmodium falciparum

Plasmodium vivax

Embedded Social science and empirical ethics research across all studies
Controlled Human Malaria Infection in Our Setting

Day 0: Inject Sporozoites

Days 7 onwards: parasites multiply in blood, opposed by immunity

Day 0-6: Liver Incubation

Use Daily qPCR to quantify parasites

Follow up for 21 days and endpoint treatment with Artemether Lumefantrine (3 day observed)

*Sickle cell trait an exclusion criteria
Healthy semi-immune adults with varying degrees of immunity (screened for range of natural exposure) from:

- Ahero – moderate-high exposure
- Kilifi South – moderate exposure
- Kilifi North – low to no exposure

Adapted from Kapulu et al 2019
Key Outcome following CHMI

- **Highly immune Phenotype**
- **Clearance Phenotype**
- **Slow Growth Phenotype**
- **Susceptible Phenotype**

Endpoint Treatment

Parasitaemia

Time (days)

3,200 Sporozoites

Infection

Sporozoites
Parasite growth following CHMI

Kapulu et al. 2021

- Parasites Detected and Treatment Needed
 - Febrile Episode

- Parasites Detected but no Treatment Needed
 - No Parasites Detected

Graphs showing parasite growth over time in different locations:
- a) Nairobi
- b) Kilifi North
- c) Kilifi South
- d) Ahero

Kapulu et al. 2021
Multi-stage Vaccine Efficacy in CHMI

Recruitment from Kilifi North – low exposure population

<table>
<thead>
<tr>
<th>Week</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>R21 (ID) N=24</td>
<td>R21/ Matrix M 10µg /50µg</td>
<td>R21/ Matrix M 10µg /50µg</td>
<td>R21/ Matrix M 10µg /50µg</td>
<td>CHMI (ID)</td>
</tr>
<tr>
<td>ME-TRAP (ID) N=24</td>
<td>ChAd63 ME-TRAP 5x10^10 vp</td>
<td></td>
<td>MVA ME-TRAP 2x10^8 pfu</td>
<td>CHMI (ID)</td>
</tr>
<tr>
<td>R21 (IV) N=14</td>
<td>R21/ Matrix M 10µg /50µg</td>
<td>R21/ Matrix M 10µg /50µg</td>
<td>R21/ Matrix M 10µg /50µg</td>
<td>CHMI (DVI)</td>
</tr>
<tr>
<td>Control (ID) N=18</td>
<td></td>
<td></td>
<td></td>
<td>CHMI (ID)</td>
</tr>
</tbody>
</table>

ClinicalTrials.gov Identifier: NCT03947190
Testing Efficacy of Vaccines: Parasite Growth

1) Control (Intradermal) N=8

2) ME-TRAP (Intradermal) N=12

3) R21 (Intradermal) N=12

4) R21 (Intravenous) N=5

R21: High efficacy
ME-TRAP: Down select

Days Post Inoculation

Density of Parasites (Determined by PCR)

- Parasites Detected and No Treatment Needed
- Parasites Detected and Treatment Needed
- No Parasites Detected
Key Outcomes for Vaccine Efficacy Study

<table>
<thead>
<tr>
<th>Parasites Detected by PCR</th>
<th>Threshold for Treatment Reached</th>
<th>Control (ID) n=8</th>
<th>ME-TRAP (ID) N=12</th>
<th>R21 (ID) n=12</th>
<th>R21 (DVI) n=5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>9 (75%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>1 (12.5%)</td>
<td>1 (8.3%)</td>
<td>3 (25.0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>7 (87.5%)</td>
<td>11 (91.7%)</td>
<td>0 (0%)</td>
<td>5 (100%)</td>
</tr>
</tbody>
</table>

- Demonstration of in vivo mechanisms of protection
- R21-induced immunity protects against ID challenge and avoided by IV route
- Synergy between R21-induced and anti-blood stage immunity: i.e., parasites that breakthrough R21-induced immunity mopped up by anti-blood-stage immunity
Summary

❖ Community considerations & consultations in design, introduction, and implementation

❖ Early engagement of Ethics & Regulatory Authorities

❖ CHIM model powerful tool for translational & discovery research
 ✓ Rapid down selection of vaccines
 ✓ Antigen discovery and vaccine development
 ✓ Disease and immune mechanisms
 ✓ Cultural and societal behaviour

Guidelines to include Challenge Studies in Kenya (first issued January 2020)
KEMRI-Wellcome Trust

Group Members
Philip Bejon
Kevin Marsh
Faith Osier
Francis Ndungu
Abdi Abdi
Mainga Hamaluba
Sam Kinyanjui
James Tuju
Silvia Kariuki
Tom Williams
Moses Mosobo
Jennifer Musyoki
Jedidah Mwacharo
Johnstone Makale
Juliana Wambua
Kennedy Mwai
Benedict Orindi
Vicki Marsh
Dorcas Kamuya
Primus Chi
Esther Awour
Hussein Mwatasa
Jimmy Shangala
Matthew Owino
Linda Moranga
Chrispinah Kaulu
Janet Mwilo

PhD Students
Michelle Muthui
Elizabeth Kibwana
Caroline Bundi
Mary Kirui

Study Volunteers

Collaborating partners
Sanaria
Stephen Hoffman
Kim Lee Sim
Pete Billingsley
Tom Richie
Yonas Abebe
Eric James
KEMRI
Bernhards Ogutu
Fred Sawe
Pwani University
Cheryl Andisi
AIDS PATH
Lou Bourgeois
Robert Choy
Nicole Maier
Patricia Njuguna

Asante sana