DNA templates, modified nucleotides and immune responses to candidate mRNA vaccines against *Mycobacterium tuberculosis* and SARS-CoV-2

Patrick Arbuthnot

Wits/SAMRC Antiviral Gene Therapy Research Unit Infectious Diseases and Oncology Research Institute (IDORI) Faculty of Health Sciences, University of the Witwatersrand SOUTH AFRICA

www.wits.ac.za/agtru/

Background

- Gene therapy for HBV infection
 - Developed use of mRNA encoding anti-HBV proteins (TALENs)
- Emphasis on freedom to operate and new IP for sustainability
 - Plasmids
 - Modified nucleotides (pseudouridine and N1-methylpseudouridine)
 - Evaluation for SARS-CoV-2 and Mtb responses

Plasmid properties

- In-house design of destination plasmid
- Components
 - T7 promoter
 - 5' UTR
 - Kozak sequence
 - MCS
 - 3' UTR
 - polyA sequence
 - Kana R or Amp R

Plasmid design

- UTRs: borrow from nature
- Scarless cloning of insert
- Multiprotein production
- Insert: uridine-depleted, codon optimised and secondary structure optimised
- Eukaryotic promoter an and polyA (bGH) signal too

T7 promoters

- Facilitates post-transcriptional/enzymatic and co-transcriptional capping
 - pT7(GG) vectors

- \rightarrow
- post-transcriptional capping and co-transcription capping (ARCA)

pT7(AG) vectors

- \rightarrow
- co-transcriptional capping (CleanCap® technology)

Post-transcriptional capping and cotranscriptional capping

5' TAATACGACTCACTATA

3' ATTATGCTGAGTGATAT

T7 Promoter

```
GGG... 3'
```

Initiator Sequence

Co-transcriptional capping (CleanCap® AG)

5' TAATACGACTCACTATA AGG... 3'
3' ATTATGCTGAGTGATAT TCC... 5'
T7 Promoter Initiator Sequence

Reporter systems

Dual protein expression

Firefly Luciferase Reporter

Modified nucleotides in COVID vaccines

- Evaluation of U vs ψ vs N1-methyl-ψ
- Inserted into mRNA from proprietary AGTRU backbone plasmid
- Combinations of variants
 - Original D614G strain (re-design)
 - Omicron 2P BA1
 - WIV-1 (Bat SARS-like coronavirus WIV1)

CGE of spike mRNAs containing modified nucleotides

Formulated (SM102) and evaluation of immunogenicity

Antibody titers: Comparison of UTP, ψ, N1me-ψ for COS-2P

Neutralisation

		ID50										
			Da	y 21		Day 35						
		D614G	ВЕТА	OMICRON BA1	WIV-1	D614G	ВЕТА	OMICRON BA1	WIV-1			
UTP- Cos.2P	954	50	50	280	50	169	244	38235	2686			
	956	50	50	1417	50	190	648	25136	765			
	958	50	50	117	50	371	856	30274	147			
	959	50	50	951	50	130	468	23398	2962			
ψ-Cos.2P	1080	50	54	Depleted	50	262	146	28312	699			
	1076	50	50	3598	50	322	433	32552	2097			
	1075	50	50	1894	50	384	725	17812	151			
	1073	50	50	3637	50	116	580	15271	1024			
N1.Cos.2P	957	50	50	1122	77	516	1145	252199	2327			
	955	50	50	1011	50	446	2183	37146	1601			
	952	50	50	801	50	466	193	20057	1425			
	1079	512	390	809	82	162	335	11987	568			

μ g/ml
<50
50 - 100
101 - 300
301 - 1000
>1000

Data-driven antigen selection informed by controllers of M.tb infection

Musvosvi, M., et al. Nat Med 29, 258-269 (2023)

Mtb mRNA vaccine development

Objective 1: To determine the immunogenicity and optimize PE13, CFP-10, WbbL1, and PPE18 mRNA vaccine construct design. All generated using pseudouridine with proprietary plasmid backbone

Individual mRNA vaccines

Polyprotein mRNA vaccines

Objective 2: To determine protection against M.tb in mice vaccinated with PE13, CFP-10, WbbL1, PPE18 containing mRNA vaccines or a construct containing all four antigens

Objective 3: To compare frequencies, functions and phenotypes of antigen-specific T cell response in controllers or progressor-associated T cells in healthy uninfected adults, healthy M.tb infected adults, and persons with active tuberculosis

Immunogenicity studies: Individual antigens

Individual antigens (10 µg) and mixed (2.5 µg of each)

- Splenocytes from vaccinated mice restimulated with peptides
- Secreted cytokine profiles

BALB/c mice

mRNA	Individual				Mix (CWPP)				
Peptide pool	CFP-10	WbbL1	PE-13	PPE-18	CFP-10	WbbL1	PE-13	PPE-18	mix (CWPP)
BALB/c									
C57BL/6									
Kramnik									

C57BL/6 mice

mRNA	Individual				Mix (CWPP)				
Peptide pool	CFP-10	WbbL1	PE-13	PPE-18	CFP-10	WbbL1	PE-13	PPE-18	mix (CWPP)
BALB/c									
C57BL/6									
Kramnik									

C3HeB/FeJ mice

mRNA	Individual				Mix (CWPP)				
Peptide pool	CFP-10	WbbL1	PE-13	PPE-18	CFP-10	WbbL1	PE-13	PPE-18	mix (CWPP)
BALB/c									
C57BL/6									
Kramnik									

CD4+ Th17 cell markers

C3HeB/FeJ mice

mRNA	Individual				Mix (CWPP)				
Peptide pool	CFP-10	WbbL1	PE-13	PPE-18	CFP-10	WbbL1	PE-13	PPE-18	mix (CWPP)
BALB/c									
C57BL/6									
Kramnik									

Immunogenicity studies: Intracellular IFNy

- Splenocytes from vaccinated mice restimulated with peptides
- Measure IFNγ-positive cells amongst CD4 or CD8 T populations

C3HeB/FeJ mice

Immunogenicity studies: M.tb Leaders

TB mRNA polyprotein constructs

mRNA		Т	В-М	7		
Peptide pool	CFP-10	WbbL1	PE-13	PPE-18	mix (CWPP)	
BALB/c						
C57BL/6						
Kramnik						
mRNA		Т	В-М	3		
BALB/c						
C57BL/6						Data in progress
Kramnik						
mRNA		Т	В-М	4		
BALB/c						
C57BL/6						Data in progress
Kramnik						

Summary and next steps

- mRNA candidate vaccines based on antigens produced by controllers
- No evidence of toxicity
- Proprietary plasmid efficient (also with reporters and SARS-CoV-2)
- Presence of ψ in mRNA
- Immunogenic in mice dependent on strain
 - Single proteins
 - Polyproteins
- Further immunogenicity and Challenge studies
- Fast-track development of TB antigens on mRNA platform (partnership with Afrigen)

Acknowledgements

Partners and Funders

