

Bio Farma Product Development
Plan for Malaria Vaccine

Neni Nurainy Research and Development PT Bio Farma

WHO/MPP mRNA Technology Transfer Programme Regional Meeting in South-East Asia 31 October – 1 November 2023

OVERVIEW PHARMACEUTICAL SOEs HOLDING

Officially formed by the Minister of SOEs on January 31th 2020, the Pharmaceutical SOE holding currently consists of three SOEs member group: PT Bio Farma (Persero) as the holding company and PT Kimia Farma Tbk. And PT Indofarma Tbk. As a subsidiary.

F**

- Vaccines
- Anti sera
- Other life Science products

- OTC & Ethical
- Medical Services

Madina

Retail

- Herbal
- Medical Devices

Export Distributions > 150 countries (polio vaccine: 2/3 global supply)

13 of Pharmaceutical manufacture (vaccines, drugs, herbal products, dan medical devices)

Largest distribution channel

Retail pharmacy network (1,262), clinic (600), dan diagnostic laboratory (62)

BIO FARMA CAPABILITIES

PQ WHO Milestones of Vaccine Products

YEAR	VACCINE
1997	OPV, measles 10 ds
2001	DTP, DT, TT (vial)
2003	TT (Uniject)
2004	Hep B (Uniject)
2006	DTP-HepB, measles 20 ds
2009	mOPV1
2010	bOPV 20 ds
2011	Td
2014	DTP/Hb/Hib (Pentabio) 5ds, 10ds
2015	bOPV 10 ds
2019	mOPV2
2020	Novel OPV2 (WHO EUL)

Others:

- SEASONAL FLU Vaccine (Flubio), BCG, sIPV,
- Antisera : Tetanus, Diphtheria, Snake Venom

API

- 1. Polio bulk
- 2. Measles bulk
- 3. Diphtheria bulk
- 4. Tetanus bulk
- 5. Pertussis bulk
- 6. Hib bulk

Pandemic preparedness

Utilization for other

mRNA base products

Afrigen, South Africa, TT mRNA Hub

Product pipeline:

COVID-19 Vaccine

Collaboration Scheme:

Bio Farma is WHO/MPP Technology Transfer recipients, and the Afrigen as mRNA Hub TT

Progress:

- 6 BF researchers trained in Afrigen on April 2022 for introductory mRNA tech
- Agreement between MPP and BF for TT program (Package 1,2,3) has been signed
- TT package 1a has been delivered to BF

Production facility establishment and capacity building for pandemic/outbreak preparedness

Progress:

- Partnering Agreement 10 years (25 August 2023)
- Kickoff meeting 25 Sept 23
- Start 6 mo. Program (1 Oct 2023)

Development of new generation of mRNA vaccine (low COGS)

Progress:

- Early discussion as part of WHO/MPPTT Program
- · MoU with Bio Farma signed
- Co-development of mRNA-based Rabies vaccine as POC

Manchester University, UK

Product pipeline:

- COVID-19 Vaccine
- mRNA Vaccine

Collaboration Scheme:

Research collaboration for mRNA seed preparation

Progress:

- MTA & Agreement already signed
- On-going PoC (in vitro and in vivo of mRNA seed of COVID-19)

Other potential partner

mRNA vaccine programmes at Bio Farma and development timeline

Schematic diagram of Bio Farma engagement continuity plan for mRNA vaccine at Bio Farma

Malaria disease: current status, control and prevention

Malaria vaccine is needed to further reduce and control malaria cases

Natural acquired immunity (NAI) against malaria

- NAI developed as a result of prolonged and continuous exposure to malaria infection.
 - This immunity not sterilizing and wanes rapidly after malaria exposure ceases.
- ➤ **High parasitemia** associate with **inflammation** and can lead to **immuno-pathology**.
- ➤ NAI can directly neutralise the parasite to decrease the parasite density (anti-parasitic) or diminish excessive proinflammatory cytokines to reduce severity of diseases (anti-disease immunity).
- NAI against severe malaria and death rapidly developed. Meanwhile, anti-parasitic immunity slowly acquired
- ➤ Since NAI did not induce sterile immunity against malaria infection, therefore, vaccine should be able to induce immune response beyond NAI —e.g high antibody and T-cell responses.

Malaria vaccine development

Cockburn, I.A. and R.A. Seder. Nat Immunol, 2018. 19(11): p. 1199-1211.

- Infection of hepatocyte during pre-erythrocytic stage is asymptomatic. Vaccine targeting pre-erythrocytic stage can induce sterile immunity.
- Blood-stage infection associate with clinical pathology.
 - Symptoms: fever, chills, sweats, headaches, body aches, malaise, nausea and vomiting.
 - Outcomes: broad range from mild to severe and death.
 - Vaccine targeting blood stage can reduce diseases severity
- Malaria vaccines are developed based on parasite's life cycle:
 - Pre-erythrocytic stage (PEV): extracellular (sporozoite stage) and intracellular (liver-stage) phase.
 - > Erythrocytic stage: Merozoite ligand and VSAs
 - Sexual stage: de-novo antigen express during parasite development in mosquito

- RTS,S/AS01E (Mosquirix) is a subunit PEV based on truncated of circumsporozoite protein (CSP) antigen.
- The vaccine induce high-level of **anti-NANP antibodies** that target the **extracellular sporozoites**.
- RTS,S protect 25-50% children and infant against malaria infection in endemic setting; indicating CSP is a protective antigen
- RTS,S were **received authorisation** from WHO in 2021 to be used in children living in areas of moderate to high malaria transmission.
- R21/Matrix M is second malaria vaccine that received authorization from WHO in 2023
- Malaria Vaccine Technology Roadmap 2013 indicated that an ideal malaria vaccine require to provide at least 75% protective efficacy against clinical malaria and reduce transmission.
- More research are still needed to developed highefficacious malaria vaccine.

Opportunity for malaria vaccine development in South-East Asia Region: Using rapid-scalable and low-cost Quantoom technology to produce mRNA vaccine targeting *P. falciparum and P. vivax*

Introduction

- While *P. falciparum* is the most common cause of malaria worldwide, other Plasmodium species, such as *P. vivax*, play a significant role in the number of malaria cases outside of Sub-Saharan Africa.
- Plasmodium vivax is the second major caused of malaria cases globally with estimates around 7.1 million cases in 2019.

Global prevalence of P. vivax (sources: vivaxmalaria.org)

- Currently, there is no available vaccine targeting *P. vivax*.
 - Development of vaccine targeting *P. vivax* is pivotal to support parasite control and prevent malaria diseases caused by *P. vivax*.
- mRNA technology is a versatile vaccine platform that capable to induce robust humoral and cellular immune response.
 - These types of immunity are required to provide protection against malaria.
- Bio Farma aim to develop mRNA vaccine targeting pre-erythrocytic stage of P. falciparum & P. vivax using strain that commonly circulated in South-East Asia Region

Project plan

2024			2025				2026				2027				
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	WP1														
			WP2												
					WP3										
									WP4						
													WP5		

WP.1 Workflow of mRNA design and template production

Chaudhary et al., Nature Reviews Drug Discovery. 2021 Vol. 20 Issue 11 Pages 817-838

WP2. Drug substance process development and production using Quantoom Ntensify technology

UI & Bio Farma

Ntensify system by Quantoom Bioscience

- Provide an integrated, seamless production system for mRNA vaccine.
 - From IVT to mRNA purification
- Small footprint area with scalability from pre-clinical development to GMP manufacturing.
- Reduce COGS, resulting in affordable mRNA vaccine.

Quantom

WP.3 Drug Product Process Development

Bio Farma & ITB

Quant m

WP.4 Preclinical Development

- Both antibody and T-cells against Plasmodium Ag (such as CSP) has been proven important for immunity against malaria.
 - It has been demonstrated that not only titre of Antibody, but certain subclass and quality of Ab (Avidity) were associate with protection status against malaria infection.
 - ➤ High Ag-specific CD8 T-cell responses were found correlate with protection against malaria infection.
 - Therefore, it is important to evaluate antibody and T-cell response against malaria Ag during preclinical trial
- ➤ Since P. falciparum is restricted human pathogen, transgenic P. berghei expressing P. falciparum protein can be used to evaluate malaria vaccine candidate in mice.

Summary

- Malaria is a serious and persistent threat to public health in many parts of Asia. The South-East Asia Region is the region with the second highest estimated malaria burden globally. An effective vaccine against *P.falciparum* and *P.vivax* is needed.
- Bio Farma project plan is to develop second-generation of PfCSP and PvCSP vaccine using mRNA technology that increase the overall affinity and longevity of the B cell response against the protective antibody epitopes and high Ag-specific T-cell response.
- The mRNA design is targeted to more effective vaccine candidate, rapid scalable, low-cost production. Development of novel UTRs and alternate lipids to ensure the freedom to operate.
- Global partnership and build innovation capacity within the country will speedy malaria vaccine development in Indonesia.

Thank You

Bio Farma:

Adriansjah Azhari Indra Rudiansyah Anna Sanawati Trilokita Tanjung Sari Shinta Kusumawardani Elgiani Yassifa Yulia Nurinsani

University of Indonesia:

Budiman Bela Febrina Meutiawati Cla Shinta Ayu Ayu Nur Sasangka Tania SW

Institute Teknologi Bandung:

Diky Mudhakir

Universitas Padjajaran:

Toto Subroto Muhammad Yusuf Wahyu Arie Hardianto

National Research and Innovation Agency/BRIN:

Rintis Noviyanti