

OVERVIEW OF A*STAR AND INFECTIOUS DISEASES RESEARCH IN A*STAR

Prof Lisa Ng

Executive Director, Biomedical Research Council and Executive Director, A*STAR Infectious Diseases Labs

WHO/MPP mRNA Technology Transfer Programme Regional Meeting in South-East Asia Bangkok, Thailand, 31 Oct to 1 Nov 2023

A*STAR's Mission and Vision

MISSION

We advance science and develop innovative technology to further economic growth and improve lives

VISION

A global leader in science, technology and open innovation

A*STAR's Research Institutes

1970 - 2000	2000 - 2010	2010 - Present
National Metrology Centre (NMC)	Bio-informatics Institute (BII)	Advanced Remanufacturing and Technology Centre (ARTC)
Institute of Microelectronics (IME)	Genome Institute of Singapore (GIS)	A*STAR Skin Research Labs (A*SRL)
Singapore Institute of Manufacturing Technology (SIMTech)	Institute for Infocomm Research (I ² R)	A*STAR Infectious Diseases (ID) Labs
Institute of Materials Research & Engineering (IMRE)	Singapore Institute for Clinical Sciences (SICS)	Singapore Institute for Food & Biotechnology Innovation (SIFBI)
Institute of High Performance Computing (IHPC)	Singapore Immunology Network (SIgN)	Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) ²
Institute of Molecular & Cell Biology (IMCB)		
Bioprocessing Technology Institute		
(BTI)		8 SERC Research Institutes 9 BMRC Research Institutes

Core BMRC capability stack

BMRC manages 9 Research Institutes which carry out a spectrum of R&D activities, ranging across knowledge creation, enabling capabilities, large scale programmes, and industry-oriented activities.

Our Vision

Lead the global fight against Infectious Diseases to protect lives and society

Our Mission

Driving scientific excellence in Infectious
Diseases research with translation to
impact on Practice and Policies for Better
Health and Economic Outcomes

ID Labs has 3 key research pillars supported by cross cutting epidemic preparedness capabilities

ID Labs' research pillars addresses growing Infectious Diseases threats and key public health concerns of Singapore and the region

Translating our basic research and core capabilities to meet industry and public sector needs

Clinical Surveillance:

Staying vigilant for novel pathogens

Close partnerships with hospitals

Cross sharing of clinical information and samples from local, regional and international collaborators.

ID Labs core capabilities in **Epidemic Preparedness**

Asset Discovery platforms

→ In vitro screening platforms

Host response monitoring

▶ Pathogen identification

Sequencing Susceptibility testing

Pathogen culture (BSL2+ and BSL3)

Unknown

Pathogen

Pre-developed cell models Organoid models Small animal and Zebrafish models

Identify mechanisms of disease pathogenesis

Infrastructure: BSL3 mobile labs

Translational:

Working with industry & public sector

Know-how to jointly develop diagnostics, therapeutics, vaccine monitoring tools to meet Industry Needs and National Priorities

Diagnostic and Therapeutic

- Genetic or serology kits
- Therapeutic antibodies
- Vaccines

Pandemic Response

- Vaccine monitoring
- Understanding of mechanism of severe disease progression

ID Labs capabilities value add to the early stages of the vaccine & therapeutics development process in Infectious Diseases

Phase 1: Discovery

Phase 2: Pre-Clinical

Phase 3: Clinical Trials Phase 4: Regulatory & Approval Phase 5: Mfg & Scale up

Phase 6: Quality Control

Vaccine Antigen discovery

- Protein subunits (epitopes)
- Live Attenuated
- Nucleic Acid (saRNA)

Asset discovery platforms

- Host directed therapies
- Defective viral genomes
- Phage therapy
- Microfluidics antibody discovery
- Viral evolution modelling
- Candida screening platform

In-vitro screening assays

- Cell based assays
- Live culture assays
- Drug susceptibility assays
- Phage display assays

Efficacy and mechanistic studies

- High throughput zebrafish models
- Mouse infection models
- Vaccine Immunoprofiling

Vaccine and adjuvant immunomonitoring

- Whole blood immunophenotyping (neutralising antibodies, T-cell, B-cells, cytokines)
- Adjuvant effects and adaptive response

Pathogen culture and identification (BSL2+ and BSL3)

ID Labs' core capabilities: vaccine immuno-monitoring expertise and technologies

Leveraging our suite of comprehensive Immuno-monitoring technologies for whole blood immunophenotyping that can be deployed to discover unique biomarkers correlating to disease severity and understanding of vaccine immune response

Immuno-monitoring technologies

Carissimo, G., Xu, W., Kwok, I. et al. 2020 Nat Commun

COVID-19 patients

at

Leading Efforts by ID Labs in Vaccine Development & Target Discovery

Persistent Global Threat

Malaria

Blocking

Tuberculosis

Candidates: TB subunit

Enteroviruses, influenza

Influenza

Next gen Polio

Candidates: attenuate RNA viruses by altering their evolutionary potential

Aquaculture vaccines SUSTAINABLE DEVELOPMENT

Scale drop disease

Lates Calcarifer Herpesvirus

Viral Nervous Necrosis

Candidates: epitopes, saRNA

Asian seabass (Lates calcarifer)

Applications of ID Labs capabilities in antiviral screening and biomarkers discovery for therapeutics and diagnostics

In vitro screening assays

Viral cell-based reporter systems

Alphavirus replicon screening assays

Live viral quantification and detection assays

Viral Neutralisation assays

Asset discovery platforms

Defective viral genomes therapeutics platform

Microfluidics antibody

discovery

Viral evolution modelling

Efficacy & Mechanistic studies

Mouse models -CHIKV, Zika, Dengue and other alphaviruses and flaviviruses

Immunoprofiling

Developing Immune-Based Diagnostics and Animal Models

Novel CHKV/ O Nyong Nyong mouse models

S-Flow Assay

Understanding Disease Pathogenesis

Understanding COVID-19 and Monkeypox

nature reviews immunology

The trinity of COVID-19: immunity, inflammation and intervention

Monkeypox: disease epidemiology, host immunity and clinical interventions

Diagnosis & Treatment Strategies

Discovery of biomarkers for differentiating febrile fevers and disease severity in dengue

Systematic analysis of disease-specific immunological signatures

severity and long-term neutralizing antibody titers

Defective viral genome based therapeutics nature communications

> Defective viral genomes as therapeutic interfering particles against flavivirus infection in mammalian and mosquito hosts

Building capabilities in ID Labs to combat antimicrobial resistance, the silent pandemic

Resistant Pathogens

"ESKAPE" bacteria

Klebsiella pneumoniae

Staphylococcus

Enterobacter spp.

aureus

faecium

Acinetobacter baumannii

Pseudomonas aeruginosa

Candida spp.

Plasmodium spp.

M. tuberculosis

ID Labs AMR Toolkit

Asset Discovery

Microfluidics antibody discovery

Outcomes

- Host-directed therapies
- Phage therapy
- Candida screening platform

Screening Assays

- *In vitro* cell cultures
- Drug susceptibility assays
- High throughput zebrafish & mouse infection models

Mechanistic studies

Explore genetic foundations of AMR, informing antibiotic development and drug discovery strategies

The Journal of Infectious Diseases

Integrative Genetic Manipulation of Plasmodium cynomolgi Reveals Multidrug Resistance-1 Y976F Associated With Increased In Vitro Susceptibility

A peptidoglycan storm caused by β-lactam antibiotic's action on host microbiota drives Candida albicans infection

Novel treatment strategies

Development of novel treatment strategies antibiotics to which AMR has not yet evolved, host directed therapies

Science Translational Medicine

Metformin as adjunct antituberculosis therapy circulating peptidoglycan dampens inflammation

Antibody neutralization of microbiota-derived and ameliorates autoimmunity

Surveillance and diagnostics

Rapidly detect and react to AMR outbreaks

SCIENTIFIC REPORTS

Microchip-based ultrafast serodiagnostic assay for tuberculosis

Phage-based diagnostics

NUCLEIC ACID THERAPEUTICS RESEARCH IN SINGAPORE/A*STAR

The Strategic Optimisation of mRNA vaccines for Preparedness of COVID-19 Variants Programme

The programme is a platform for the development of novel RNA vaccine technologies from discovery to novel encapsulation to proof of concept in *in vivo* models

ID Labs is the **host institution** for this multi-RI Programme to develop mRNA-based therapeutics

14

Nucleic Acids Therapeutics Initiative (NATi): A National Platform Hosted by A*STAR

Vision of NATi

Singapore to be the regional hub for NAT to achieve research and clinical translational excellence, strengthens resilience to future pandemics and supports a vibrant biotech ecosystem

NATi is a national platform to accelerate the translation of NAT Assets

Dr Boon-Tong Koh Executive Director, NATi Executive Director, BTI

NAT Exchange

- Translational engine to drive RNA therapeutics into the clinic
- Build and develop delivery platforms to address industry challenges
- Partner with industry to co-develop platforms and avail validated technologies to support asset translation

RNA Foundry

- Advance RNA manufacturing processes and technologies
- Production of pre-clinical and clinical-grade mRNA
- Partner with industry to co-develop and avail technology and manufacturing capacity

NAT Exchange (NAT X) Overview

NAT X aims to **drive the research and development of RNA into the clinic** through:

- 1. Supporting researchers' development of RNA therapeutics by **developing/partnering on enabling platforms** and developing alliances with clinical KOLs
- 2. Developing new enabling technologies to address clinical and industrial challenges

Focus Areas in Delivery Technologies for NAT X

Conjugation

For small RNA delivery

Low bioavailability and rapid clearance

Explore chemical modifications and conjugates to enable targeted delivery and alternative routes of administration

Encapsulation (Lipids, polymers, EVs)

For large RNA delivery

Challenges in cytotoxicity, biodistribution, immunogenicity and stability

Develop and improve technologies to explore variations of component ratios and other additions, such as PEG and PBAE

Cell-targeting Nanocarriers

Integrates targeting ligands and nanocarriers

Lack of target specificity causing off-target side effects and lowered efficacy

Design and manipulate EV surfaces.

Modulate composition of nanocarriers with high affinity targeting ligands and linkers.

Novel Modalities

Future new/innovative modalities/platforms

Challenge

Research focus

<u>egend</u>

EVs: Extracellular vesicles, **PEG:** Polyethylene glycol, **PBAEs:** Poly(β-amino ester)

Note: Focus areas may be subject to change

RNA Foundry – Aims and Overview

RNA Foundry aims to:

- **1. Address clinical and industry problem statements** and **revolutionise RNA manufacturing** through the development of next-generation manufacturing technologies and processes
- 2. Support translation of RNA assets from scientists, clinicians and academics by producing pre-clinical- and clinical-grade formulated RNA

Strategy for building RNA manufacturing capabilities in Singapore Build ______ Partner _____

Manufacturing technologies and processes

Research-grade formulated RNA

GMP-grade formulated RNA

To build R&D capabilities in technology development and RNA manufacturing

R&D Manufacturing Programme

Potential areas:

- New RNA design
- Continuous IVT flow reaction
- Plasmid production
- Encapsulation technologies
- Cell free synthesis
- Formulation
- · Enzyme engineering

To produce research- and GMP-grade formulated RNA

- Strategic industry partners will avail their expertise and facilities to produce research- and GMP-grade formulated RNA
- Researchers can access this capability to translate their mRNA assets for pre-clinical and clinical studies

Focus Areas in Manufacturing for RNA Foundry

New RNA Design

Inherent instability and susceptibility to degradation by nucleases and oxidative damage

Improve protein translation and stability to reduce reactogenicity

Plasmid Production

Supply chain constraints, poor scalability and low efficiency

Improve scalability and efficiency to reduce impact of supply chain disruptions

Raw Material Synthesis

High cost and availability dependent on limited suppliers

Diversify raw materials to reduce reliance on suppliers to improve costeffectiveness and build pandemic resilience

Quality Control/ Attributes

Lack standardised and welldefined quality control attributes

Develop analytical methods to characterise starting materials, intermediates and final products

In-Vitro **Transcription (IVT)**

High cost, dsRNA byproduct generation and high variability

Reduce dsRNA by-product generation by developing optimised protocols and/or novel T7 polymerase systems **Purification**

Highly variable output, low efficiency and recovery. poor scalability

Improve efficiency and scalability to maximise recovery to achieve high purity

Encapsulation and Formulation

Thermal instability, allergenic and IP limitations

Develop novel/improved encapsulation technologies and explore alternate formulation strategies

Challenge

Research focus

Note: Focus areas may be subject to change

Legend

mRNA: Messenger RNA dsRNA: Double-stranded RNA **IP:** Intellectual property

Synergy of NATi in the Ecosystem

Product Life Cycle

NIRBA

(National Initiative for RNA Biology and Its Applications)

(Work in progress)

Hospitals and National Programmes/Consortia

PREPARE

Programme for Research in Epidemic Preparedness and REsponse

Universities and Research Entities

Industry

RNA Foundry - Manufacturing

Manufacturing technologies and processes Pre-clinicalgrade formulated RNA GMP-grade formulated RNA (research scale)

Clinical Trial Centres PREPARE

and REsponse

Spin-offs

Legend:

RNA Tx: RNA therapeutics **LNP**: Lipid nanoparticles

9 Pathways for Industry Engagement

Manufacturing

technologies

and processes

Consultation – industry to provide insights to NAT technology, trends and problem statements

Asset flow

Out-licensing

of tech/assets

Co-creation of

NewCo

Pre-clinical-

grade

formulated

RNA

and expertise

Consultation with Clinical KOLs & Health Science Authority (HSA)

GMP-grade

formulated

RNA (research)

scale)

THANK YOU

www.a-star.edu.sg

